期刊论文详细信息
Journal of Diabetes & Metabolic Disorders
Effects of resveratrol treatment on bone and cartilage in obese diabetic mice
Jeffrey H Plochocki1  Layla Al-Nakkash3  Tom L Broderick2  Joseph Cooley4 
[1] Department of Anatomy, Arizona College of Osteopathic Medicine, Midwestern University, Glendale, AZ, USA;Departent of Physiology, Laboratory of Diabetes and Exercise Metabolism, Arizona College of Osteopathic Medicine, Midwestern University, Glendale, AZ, USA;Departent of Physiology, Arizona College of Osteopathic Medicine, Midwestern University, Glendale, AZ, USA;Arizona College of Osteopathic Medicine, Midwestern University, Glendale, AZ, USA
关键词: Cross-sectional geometry;    Growth plate;    Resveratrol;    Leptin;   
Others  :  1144171
DOI  :  10.1186/s40200-015-0141-6
 received in 2014-09-12, accepted in 2015-02-23,  发布年份 2015
PDF
【 摘 要 】

Background

Resveratrol is a polyphenolic phytoalexin that has been shown to exhibit osteoprotective and chondroprotective properties. We examine the effects of resveratrol treatment on bone and cartilage tissue of obese, diabetic ob/ob mice.

Methods

Eight-week-old ob/ob and lean control mice were given trans-resveratrol at an oral dose of 25 mg/kg for 3 weeks. Histomorphometric and cross-sectional-geometric variables were analyzed.

Results

Ob/ob mice in our study exhibit significantly reduced femoral length, resistance to loading, and tibial growth plate total area and calcified area than lean controls (P < 0.05). Resveratrol treatment significantly increased cortical area in both ob/ob and control mice, but did not improve cross-sectional indicators of resistance to bending. Resveratrol treatment also reduced tibial length and calcified growth plate cartilage area in comparison to untreated mice (P < 0.05).

Conclusion

Resveratrol treatment of ob/ob mice had mixed effects on bone histomorphometry at the femoral midshaft. Treatment increased cortical area but decreased bone length.

【 授权许可】

   
2015 Cooley et al.; licensee BioMed Central.

【 预 览 】
附件列表
Files Size Format View
20150330091224543.pdf 1171KB PDF download
Figure 2. 132KB Image download
Figure 1. 15KB Image download
【 图 表 】

Figure 1.

Figure 2.

【 参考文献 】
  • [1]Chu SP, Kelsey JL, Keegan TH, Sternfeld B, Prill M, Quesenberry CP, et al.: Risk factors for proximal humerus fracture. Am J Epidemiol 2004, 160:360-7.
  • [2]de Liefde II, van der Klift M, de Laet CE, van Daele PL, Hofman A, Pols HA: Bone mineral density and fracture risk in type-2 diabetes mellitus: the Rotterdam Study. Osteoporos Int 2005, 16:1713-20.
  • [3]Bonds DE, Larson JC, Schwartz AV, Strotmeyer ES, Robbins J, Rodriguez BL, et al.: Risk of fracture in women with type 2 diabetes: the Women’s Health Initiative Observational Study. J Clin Endocrinol Metab 2006, 91:3404-10.
  • [4]Burghardt AJ, Issever AS, Schwartz AV, Davis KA, Masharani U, Majumdar S, et al.: High-resolution peripheral quantitative computed tomographic imaging of cortical and trabecular bone microarchitecture in patients with type 2 diabetes mellitus. J Clin Endocrinol Metab 2010, 95:5045-55.
  • [5]Leslie WD, Rubin MR, Schwartz AV, Kanis JA: Type 2 diabetes and bone. J Bone Miner Res 2012, 27:2231-7.
  • [6]Saladin R, De Vos P, Guerre-Millo M, Leturque A, Girard J, Staels B, et al.: Transient increase in obese gene expression after food intake or insulin administration. Nature 2005, 377:527-9.
  • [7]Hamrick MW, Ferrari SL: Leptin and the sympathetic connection of fat to bone. Osteoporos Int 2008, 19:905-12.
  • [8]Wauters M, Considine RV, Yudkin JS, Peiffer F, De Leeuw I, Van Gaal LF: Leptin levels in type 2 diabetes: associations with measures of insulin resistance and insulin secretion. Horm Metab Res 2003, 35:92-6.
  • [9]Hamrick MW, Pennington C, Newton D, Xie D, Isales C: Leptin deficiency produces contrasting phenotypes in bones of the limb and spine. Bone 2004, 34:376-83.
  • [10]Muzzin P, Eisensmith RC, Copeland KC, Woo SLC: Correction of obesity and diabetes in genetically obese mice by leptin gene therapy. Proc Natl Acad Sci U S A 1996, 93:14804-8.
  • [11]Kishida Y, Hirao M, Tamai N, Nampei A, Fujimoto T, Nakase T, et al.: Leptin regulates chondrocyte differentiation and matrix maturation during endochondral ossification. Bone 2005, 37:607-21.
  • [12]Pearson KJ, Baur JA, Lewis KN, Peshkin L, Price NL, Labinskyy N, et al.: Resveratrol delays age-related deterioration and mimics transcriptional aspects of dietary restriction without extending life span. Cell Metab 2008, 8:157-68.
  • [13]Tseng PC, Hou SM, Chen RJ, Peng HW, Hsieh CF, Kuo ML, et al.: Resveratrol promotes osteogenesis of human mesenchymal stem cells by upregulating RUNX2 gene expression via the SIRT1/FOXO3A axis. J Bone Miner Res 2001, 26:2552-63.
  • [14]Shakibaei M, Shayan P, Busch F, Aldinger C, Buhrmann C, Lueders C, et al.: Resveratrol mediated modulation of Sirt-1/Runx2 promotes osteogenic differentiation of mesenchymal stem cells: potential role of Runx2 deacetylation. PLoS One 2011, 7:e35712.
  • [15]Kim HJ, Braun HJ, Dragoo JL: The effect of resveratrol on normal and osteoarthritic chondrocyte metabolism. Bone Joint Res 2014, 3:51-9.
  • [16]Su HC, Hung LM, Chen JK: Resveratrol, a red wine antioxidant, possesses an insulin-like effect in streptozotocin-induced diabetic rats. Am J Physiol Endocrinol Metab 2006, 290:1339-46.
  • [17]Brasnyó P, Molnár GA, Mohás M, Markó L, Laczy B, Cseh J, et al.: Resveratrol improves insulin sensitivity, reduces oxidative stress and activates the Akt pathway in type 2 diabetic patients. Br J Nutr 2011, 106:383-9.
  • [18]Das S, Lin HS, Ho PC, Ng KY: The impact of aqueous solubility and dose on the pharmacokinetic profiles of resveratrol. Pharm Res 2008, 25:2593-600.
  • [19]Turner RT, Evans GL, Zhang M, Maran A, Sibonga JD: Is resveratrol an estrogen agonist in growing rats? Endocrin 1999, 140:50-4.
  • [20]Burr DB: The relationship among physical, geo. metrical and mechamcal properties of bone, with a note on the properties of nonhuman primate bone. Yrbk Phys Anthrop 1980, 1980:109-46.
  • [21]Curry JD: Bones: Structure and Mechanics. Princeton University Press, NJ; 2002.
  • [22]Ducy P, Amling M, Takeda S, Priemel M, Schilling AF, Beil FT, et al.: Leptin inhibits bone formation through a hypothalamic relay: a central control of bone mass. Cell 2000, 100:197-207.
  • [23]Burguera B, Hofbauer LC, Thomas T, Gori F, Evans GL, Khosla S, et al.: Leptin reduces ovariectomy-induced bone loss in rats. Endocrin 2001, 142:3546-53.
  • [24]Takeda S, Elefteriou F, Levasseur R, Liu X, Zhao L, Parker KL, et al.: Leptin regulates bone formation via the sympathetic nervous system. Cell 2002, 111:305-17.
  • [25]Liu LF, Shen WJ, Ueno M, Patel S, Azhar S, Kraemer FB: Age-related modulation of the effects of obesity on gene expression profiles of mouse bone marrow and epididymal adipocytes. PLoS One 2013, 8:e72367. doi:10.1371/journal.pone.0072367
  • [26]Zhang J, Li T, Xu L, Li W, Cheng M, Zhuang J, et al.: Leptin promotes ossification through multiple ways of bone metabolism in osteoblast: a pilot study. Gynecol Endocrinol 2013, 29:758-62.
  • [27]Turner RT, Kalra SP, Wong CP, Philbrick KA, Lindenmaier LB, Boghossian S, et al.: Peripheral leptin regulates bone formation. J Bone Miner Res 2013, 28:22-34.
  • [28]Kume K, Satomura K, Nishisho S, Kitaoka E, Yamanouchi K, Tobiume S, et al.: Potential role of leptin in endochondral ossification. J Histochem Cytochem 2002, 50:159-69.
  • [29]Nakajima R, Inada H, Koike T, Yamano T: Effects of leptin to cultured growth plate chondrocytes. Horm Res 2003, 60:91-8.
  • [30]Bartell SM, Rayalam S, Ambati S, Gaddam DR, Hartzell DL, Hamrick M, et al.: Central (ICV) leptin injection increases bone formation, bone mineral density, muscle mass, serum IGF-1, and the expression of osteogenic genes in leptin-deficient ob/ob mice. J Bone Miner Res 2011, 26:1710-20.
  • [31]Tamura T, Yoneda M, Yamane K, Nakanishi S, Nakashima R, Okubo M, et al.: Serum leptin and adiponectin are positively associated with bone mineral density at the distal radius in patients with type 2 diabetes mellitus. Metab 2007, 56:623-8.
  • [32]Schwartz AV, Sellmeyer DE, Ensrud KE, Cauley JA, Tabor HK, Schreiner PJ, et al.: Older women with diabetes have an increased risk of fracture: a prospective study. J Clin Endocrinol Metab 2001, 86:32-8.
  • [33]Janghorbani M1, Van Dam RM, Willett WC, Hu FB: Systematic review of type 1 and type 2 diabetes mellitus and risk of fracture. Am J Epidemiol 2007, 166:495-505.
  • [34]Mizutani K, Ikeda K, Kawai Y, Yamori Y: Resveratrol stimulates the proliferation and differentiation of osteoblastic MC3T3-E1 cells. Biochem Biophys Res Commun 1998, 253:859-63.
  • [35]Song LH, Pan W, Yu YH, Quarles LD, Zhou HH, Xiao ZS: Resveratrol prevents CsA inhibition of proliferation and osteoblastic differentiation of mouse bone marrow-derived mesenchymal stem cells through an ER/NO/cGMP pathway. Toxicol In Vitro 2006, 20:915-22.
  • [36]He X, Andersson G, Lindgren U, Li Y: Resveratrol prevents RANKL-induced osteoclast differentiation of murine osteoclast progenitor RAW 264.7 cells through inhibition of ROS production. Biochem Biophys Res Commun 2010, 401:356-62.
  • [37]Shakibaei M, Csaki C, Nebrich S, Mobasheri A: Resveratrol suppresses interleukin-1beta-induced inflammatory signaling and apoptosis in human articular chondrocytes: potential for use as a novel nutraceutical for the treatment of osteoarthritis. Biochem Pharmacol 2008, 76:1426-39.
  • [38]Glehr M, Breisach M, Walzer S, Lohberger B, Fürst F, Friesenbichler J, et al.: The influence of resveratrol on the synovial expression of matrix metalloproteinases and receptor activator of NF-kappaB ligand in rheumatoid arthritis fibroblast-like synoviocytes. Z Naturforsch C 2013, 68:336-42.
  • [39]Kondo A, Otsuka T, Kuroyanagi G, Yamamoto N, Matsushima-Nishiwaki R, Mizutani J, et al.: Resveratrol inhibits BMP-4-stimulated VEGF synthesis in osteoblasts: Suppression of S6 kinase. Int J Mol Med 2014, 33:1013-8.
  文献评价指标  
  下载次数:5次 浏览次数:1次