期刊论文详细信息
Cell Division
Sumo and the cellular stress response
Jorrit M. Enserink1 
[1] Institute for Microbiology, Oslo University Hospital, Sognsvannsveien 20N-0027, Oslo, Norway
关键词: SIMs;    Nutrient stress;    Viral infections;    ER stress;    DNA damage response;    Transcription;    Stress response;    Sumo;   
Others  :  1216042
DOI  :  10.1186/s13008-015-0010-1
 received in 2015-06-10, accepted in 2015-06-12,  发布年份 2015
PDF
【 摘 要 】

The ubiquitin family member Sumo has important functions in many cellular processes including DNA repair, transcription and cell division. Numerous studies have shown that Sumo is essential for maintaining cell homeostasis when the cell encounters endogenous or environmental stress, such as osmotic stress, hypoxia, heat shock, genotoxic stress, and nutrient stress. Regulation of transcription is a key component of the Sumo stress response, and multiple mechanisms have been described by which Sumo can regulate transcription. Although many individual substrates have been described that are sumoylated during the Sumo stress response, an emerging concept is modification of entire complexes or pathways by Sumo. This review focuses on the function and regulation of Sumo during the stress response.

【 授权许可】

   
2015 Enserink.

【 预 览 】
附件列表
Files Size Format View
20150628030237856.pdf 2022KB PDF download
Fig. 6. 66KB Image download
Fig. 5. 65KB Image download
Fig. 4. 45KB Image download
Fig. 3. 59KB Image download
Fig. 2. 39KB Image download
Fig. 1. 28KB Image download
【 图 表 】

Fig. 1.

Fig. 2.

Fig. 3.

Fig. 4.

Fig. 5.

Fig. 6.

【 参考文献 】
  • [1]Meluh PB, Koshland D. Evidence that the MIF2 gene of Saccharomyces cerevisiae encodes a centromere protein with homology to the mammalian centromere protein CENP-C. Mol Biol Cell. 1995; 6(7):793-807.
  • [2]Bayer P, Arndt A, Metzger S, Mahajan R, Melchior F, Jaenicke R et al.. Structure determination of the small ubiquitin-related modifier SUMO-1. J Mol Biol. 1998; 280(2):275-86.
  • [3]Gill G. SUMO and ubiquitin in the nucleus: different functions, similar mechanisms? Genes Dev. 2004; 18(17):2046-59.
  • [4]Gareau JR, Lima CD. The SUMO pathway: emerging mechanisms that shape specificity, conjugation and recognition. Nat Rev Mol Cell Biol. 2010; 11(12):861-71.
  • [5]Mukhopadhyay D, Dasso M. Modification in reverse: the SUMO proteases. Trends Biochem Sci. 2007; 32(6):286-95.
  • [6]Bachant J, Alcasabas A, Blat Y, Kleckner N, Elledge SJ. The SUMO-1 isopeptidase Smt4 is linked to centromeric cohesion through SUMO-1 modification of DNA topoisomerase II. Mol Cell. 2002; 9(6):1169-82.
  • [7]Pelisch F, Sonneville R, Pourkarimi E, Agostinho A, Blow JJ, Gartner A et al.. Dynamic SUMO modification regulates mitotic chromosome assembly and cell cycle progression in Caenorhabditis elegans. Nat Commun. 2014; 5:5485.
  • [8]Texari L, Dieppois G, Vinciguerra P, Contreras MP, Groner A, Letourneau A et al.. The nuclear pore regulates GAL1 gene transcription by controlling the localization of the SUMO protease Ulp1. Mol Cell. 2013; 51(6):807-18.
  • [9]Li SJ, Hochstrasser M. The yeast ULP2 (SMT4) gene encodes a novel protease specific for the ubiquitin-like Smt3 protein. Mol Cell Biol. 2000; 20(7):2367-77.
  • [10]Takahashi Y, Mizoi J, Toh EA, Kikuchi Y. Yeast Ulp1, an Smt3-specific protease, associates with nucleoporins. J Biochem. 2000; 128(5):723-5.
  • [11]Rodriguez MS, Dargemont C, Hay RT. SUMO-1 conjugation in vivo requires both a consensus modification motif and nuclear targeting. J Biol Chem. 2001; 276(16):12654-9.
  • [12]Bernier-Villamor V, Sampson DA, Matunis MJ, Lima CD. Structural basis for E2-mediated SUMO conjugation revealed by a complex between ubiquitin-conjugating enzyme Ubc9 and RanGAP1. Cell. 2002; 108(3):345-56.
  • [13]Lin D, Tatham MH, Yu B, Kim S, Hay RT, Chen Y. Identification of a substrate recognition site on Ubc9. J Biol Chem. 2002; 277(24):21740-8.
  • [14]Sampson DA, Wang M, Matunis MJ. The small ubiquitin-like modifier-1 (SUMO-1) consensus sequence mediates Ubc9 binding and is essential for SUMO-1 modification. J Biol Chem. 2001; 276(24):21664-9.
  • [15]Yang XJ, Gregoire S. A recurrent phospho-sumoyl switch in transcriptional repression and beyond. Mol Cell. 2006; 23(6):779-86.
  • [16]Yang SH, Galanis A, Witty J, Sharrocks AD. An extended consensus motif enhances the specificity of substrate modification by SUMO. EMBO J. 2006; 25(21):5083-93.
  • [17]Castillo-Lluva S, Tatham MH, Jones RC, Jaffray EG, Edmondson RD, Hay RT et al.. SUMOylation of the GTPase Rac1 is required for optimal cell migration. Nat Cell Biol. 2010; 12(11):1078-85.
  • [18]Zhu J, Zhu S, Guzzo CM, Ellis NA, Sung KS, Choi CY et al.. Small ubiquitin-related modifier (SUMO) binding determines substrate recognition and paralog-selective SUMO modification. J Biol Chem. 2008; 283(43):29405-15.
  • [19]Blomster HA, Imanishi SY, Siimes J, Kastu J, Morrice NA, Eriksson JE et al.. In vivo identification of sumoylation sites by a signature tag and cysteine-targeted affinity purification. J Biol Chem. 2010; 285(25):19324-9.
  • [20]Hoege C, Pfander B, Moldovan GL, Pyrowolakis G, Jentsch S. RAD6-dependent DNA repair is linked to modification of PCNA by ubiquitin and SUMO. Nature. 2002; 419(6903):135-41.
  • [21]Tammsalu T, Matic I, Jaffray EG, Ibrahim AF, Tatham MH, Hay RT. Proteome-wide identification of SUMO2 modification sites. Sci Signal. 2014; 7(323):rs2.
  • [22]Bencsath KP, Podgorski MS, Pagala VR, Slaughter CA, Schulman BA. Identification of a multifunctional binding site on Ubc9p required for Smt3p conjugation. J Biol Chem. 2002; 277(49):47938-45.
  • [23]Tatham MH, Jaffray E, Vaughan OA, Desterro JM, Botting CH, Naismith JH et al.. Polymeric chains of SUMO-2 and SUMO-3 are conjugated to protein substrates by SAE1/SAE2 and Ubc9. J Biol Chem. 2001; 276(38):35368-74.
  • [24]Perry JJ, Tainer JA, Boddy MN. A SIM-ultaneous role for SUMO and ubiquitin. Trends Biochem Sci. 2008; 33(5):201-8.
  • [25]Tatham MH, Geoffroy MC, Shen L, Plechanovova A, Hattersley N, Jaffray EG et al.. RNF4 is a poly-SUMO-specific E3 ubiquitin ligase required for arsenic-induced PML degradation. Nat Cell Biol. 2008; 10(5):538-46.
  • [26]Lallemand-Breitenbach V, Jeanne M, Benhenda S, Nasr R, Lei M, Peres L et al.. Arsenic degrades PML or PML-RARalpha through a SUMO-triggered RNF4/ubiquitin-mediated pathway. Nat Cell Biol. 2008; 10(5):547-55.
  • [27]Fryrear KA, Guo X, Kerscher O, Semmes OJ. The Sumo-targeted ubiquitin ligase RNF4 regulates the localization and function of the HTLV-1 oncoprotein Tax. Blood. 2012; 119(5):1173-81.
  • [28]Elrouby N, Bonequi MV, Porri A, Coupland G. Identification of Arabidopsis SUMO-interacting proteins that regulate chromatin activity and developmental transitions. Proc Natl Acad Sci U S A. 2013; 110(49):19956-61.
  • [29]Gonzalez-Prieto R, Cuijpers SA, Kumar R, Hendriks IA, Vertegaal AC. c-Myc is targeted to the proteasome for degradation in a SUMOylation-dependent manner, regulated by PIAS1, SENP7 and RNF4. Cell cycle. 2015:0. doi:10.1080/15384101.2015.1040965.
  • [30]Srikumar T, Lewicki MC, Costanzo M, Tkach JM, van Bakel H, Tsui K et al.. Global analysis of SUMO chain function reveals multiple roles in chromatin regulation. J Cell Biol. 2013; 201(1):145-63.
  • [31]Moldovan GL, Pfander B, Jentsch S. PCNA controls establishment of sister chromatid cohesion during S phase. Mol Cell. 2006; 23(5):723-32.
  • [32]Mohan RD, Rao A, Gagliardi J, Tini M. SUMO-1-dependent allosteric regulation of thymine DNA glycosylase alters subnuclear localization and CBP/p300 recruitment. Mol Cell Biol. 2007; 27(1):229-43.
  • [33]Minty A, Dumont X, Kaghad M, Caput D. Covalent modification of p73alpha by SUMO-1. Two-hybrid screening with p73 identifies novel SUMO-1-interacting proteins and a SUMO-1 interaction motif. J Biol Chem. 2000; 275(46):36316-23.
  • [34]Song J, Durrin LK, Wilkinson TA, Krontiris TG, Chen Y. Identification of a SUMO-binding motif that recognizes SUMO-modified proteins. Proc Natl Acad Sci U S A. 2004; 101(40):14373-8.
  • [35]Reverter D, Lima CD. Insights into E3 ligase activity revealed by a SUMO-RanGAP1-Ubc9-Nup358 complex. Nature. 2005; 435(7042):687-92.
  • [36]Song J, Zhang Z, Hu W, Chen Y. Small ubiquitin-like modifier (SUMO) recognition of a SUMO binding motif: a reversal of the bound orientation. J Biol Chem. 2005; 280(48):40122-9.
  • [37]Hannich JT, Lewis A, Kroetz MB, Li SJ, Heide H, Emili A et al.. Defining the SUMO-modified proteome by multiple approaches in Saccharomyces cerevisiae. J Biol Chem. 2005; 280(6):4102-10.
  • [38]Hecker CM, Rabiller M, Haglund K, Bayer P, Dikic I. Specification of SUMO1- and SUMO2-interacting motifs. J Biol Chem. 2006; 281(23):16117-27.
  • [39]Stehmeier P, Muller S. Phospho-regulated SUMO interaction modules connect the SUMO system to CK2 signaling. Mol Cell. 2009; 33(3):400-9.
  • [40]Cremona CA, Sarangi P, Yang Y, Hang LE, Rahman S, Zhao X. Extensive DNA damage-induced sumoylation contributes to replication and repair and acts in addition to the mec1 checkpoint. Mol Cell. 2012; 45(3):422-32.
  • [41]Johnson ES, Blobel G. Cell cycle-regulated attachment of the ubiquitin-related protein SUMO to the yeast septins. J Cell Biol. 1999; 147(5):981-94.
  • [42]Psakhye I, Jentsch S. Protein group modification and synergy in the SUMO pathway as exemplified in DNA repair. Cell. 2012; 151(4):807-20.
  • [43]Hendriks IA, D'Souza RC, Yang B, Verlaan-de Vries M, Mann M, Vertegaal AC. Uncovering global SUMOylation signaling networks in a site-specific manner. Nat Struct Mol Biol. 2014; 21(10):927-36.
  • [44]Saitoh H, Hinchey J. Functional heterogeneity of small ubiquitin-related protein modifiers SUMO-1 versus SUMO-2/3. J Biol Chem. 2000; 275(9):6252-8.
  • [45]Zhou W, Ryan JJ, Zhou H. Global analyses of sumoylated proteins in Saccharomyces cerevisiae. Induction of protein sumoylation by cellular stresses. J Biol Chem. 2004; 279(31):32262-8.
  • [46]Castro PH, Tavares RM, Bejarano ER, Azevedo H. SUMO, a heavyweight player in plant abiotic stress responses. Cell Mol Life Sci. 2012; 69(19):3269-83.
  • [47]Miura K, Hasegawa PM. Sumoylation and other ubiquitin-like post-translational modifications in plants. Trends Cell Biol. 2010; 20(4):223-32.
  • [48]Park HJ, Kim WY, Park HC, Lee SY, Bohnert HJ, Yun DJ. SUMO and SUMOylation in plants. Mol Cells. 2011; 32(4):305-16.
  • [49]Jackson SP, Durocher D. Regulation of DNA damage responses by ubiquitin and SUMO. Mol Cell. 2013; 49(5):795-807.
  • [50]Sarangi P, Zhao X. SUMO-mediated regulation of DNA damage repair and responses. Trends Biochem Sci. 2015; 40(4):233-42.
  • [51]Kats ES, Enserink JM, Martinez S, Kolodner RD. The Saccharomyces cerevisiae Rad6 Post Replication Repair and Siz1/Srs2 Homologous Recombination-inhibiting pathways process DNA damage that arises in asf1 mutants. Molecular and cellular biology. 2009. doi:MCB.00894-09 10.1128/MCB.00894-09.
  • [52]Krejci L, Van Komen S, Li Y, Villemain J, Reddy MS, Klein H et al.. DNA helicase Srs2 disrupts the Rad51 presynaptic filament. Nature. 2003; 423(6937):305-9.
  • [53]Veaute X, Jeusset J, Soustelle C, Kowalczykowski SC, Le Cam E, Fabre F. The Srs2 helicase prevents recombination by disrupting Rad51 nucleoprotein filaments. Nature. 2003; 423(6937):309-12.
  • [54]Pfander B, Moldovan GL, Sacher M, Hoege C, Jentsch S. SUMO-modified PCNA recruits Srs2 to prevent recombination during S phase. Nature. 2005; 436(7049):428-33.
  • [55]Saponaro M, Callahan D, Zheng X, Krejci L, Haber JE, Klein HL et al. Cdk1 targets Srs2 to complete synthesis-dependent strand annealing and to promote recombinational repair. PLoS Genetics.6(2):e1000858. doi:10.1371/journal.pgen.1000858.
  • [56]Kolesar P, Sarangi P, Altmannova V, Zhao X, Krejci L. Dual roles of the SUMO-interacting motif in the regulation of Srs2 sumoylation. Nucleic Acids Res. 2012; 40(16):7831-43.
  • [57]Xiao Z, Chang JG, Hendriks IA, Sigurethsson JO, Olsen JV, Vertegaal AC. System-wide Analysis of SUMOylation Dynamics in Response to Replication Stress Reveals Novel Small Ubiquitin-like Modified Target Proteins and Acceptor Lysines Relevant for Genome Stability. Mol Cell Proteomics. 2015; 14(5):1419-34.
  • [58]Van Damme E, Laukens K, Dang TH, Van Ostade X. A manually curated network of the PML nuclear body interactome reveals an important role for PML-NBs in SUMOylation dynamics. Int J Biol Sci. 2010; 6(1):51-67.
  • [59]Bernardi R, Pandolfi PP. Structure, dynamics and functions of promyelocytic leukaemia nuclear bodies. Nat Rev Mol Cell Biol. 2007; 8(12):1006-16.
  • [60]Everett RD, Chelbi-Alix MK. PML and PML nuclear bodies: implications in antiviral defence. Biochimie. 2007; 89(6–7):819-30.
  • [61]Lallemand-Breitenbach V, de The H. PML nuclear bodies. Cold Spring Harb Perspect Biol. 2010; 2(5):a000661.
  • [62]Bonilla WV, Pinschewer DD, Klenerman P, Rousson V, Gaboli M, Pandolfi PP et al.. Effects of promyelocytic leukemia protein on virus-host balance. J Virol. 2002; 76(8):3810-8.
  • [63]Chu Y, Yang X. SUMO E3 ligase activity of TRIM proteins. Oncogene. 2011; 30(9):1108-16.
  • [64]Pampin M, Simonin Y, Blondel B, Percherancier Y, Chelbi-Alix MK. Cross talk between PML and p53 during poliovirus infection: implications for antiviral defense. J Virol. 2006; 80(17):8582-92.
  • [65]Boggio R, Colombo R, Hay RT, Draetta GF, Chiocca S. A mechanism for inhibiting the SUMO pathway. Mol Cell. 2004; 16(4):549-61.
  • [66]Boggio R, Passafaro A, Chiocca S. Targeting SUMO E1 to ubiquitin ligases: a viral strategy to counteract sumoylation. J Biol Chem. 2007; 282(21):15376-82.
  • [67]Muller S, Dejean A. Viral immediate-early proteins abrogate the modification by SUMO-1 of PML and Sp100 proteins, correlating with nuclear body disruption. J Virol. 1999; 73(6):5137-43.
  • [68]Wimmer P, Schreiner S, Dobner T. Human pathogens and the host cell SUMOylation system. J Virol. 2012; 86(2):642-54.
  • [69]Everett RD, Boutell C, Hale BG. Interplay between viruses and host sumoylation pathways. Nat Rev Microbiol. 2013; 11(6):400-11.
  • [70]Hetz C. The unfolded protein response: controlling cell fate decisions under ER stress and beyond. Nat Rev Mol Cell Biol. 2012; 13(2):89-102.
  • [71]Chen H, Qi L. SUMO modification regulates the transcriptional activity of XBP1. Biochem J. 2010; 429(1):95-102.
  • [72]Jiang Z, Fan Q, Zhang Z, Zou Y, Cai R, Wang Q et al.. SENP1 deficiency promotes ER stress-induced apoptosis by increasing XBP1 SUMOylation. Cell Cycle. 2012; 11(6):1118-22.
  • [73]Lim Y, Lee D, Kalichamy K, Hong SE, Michalak M, Ahnn J et al.. Sumoylation regulates ER stress response by modulating calreticulin gene expression in XBP-1-dependent mode in Caenorhabditis elegans. Int J Biochem Cell Biol. 2014; 53:399-408.
  • [74]Moore KA, Plant JJ, Gaddam D, Craft J, Hollien J. Regulation of sumo mRNA during endoplasmic reticulum stress. PLoS One. 2013; 8(9): Article ID e75723
  • [75]Uemura A, Taniguchi M, Matsuo Y, Oku M, Wakabayashi S, Yoshida H. UBC9 regulates the stability of XBP1, a key transcription factor controlling the ER stress response. Cell Struct Funct. 2013; 38(1):67-79.
  • [76]Gill G. Something about SUMO inhibits transcription. Curr Opin Genet Dev. 2005; 15(5):536-41.
  • [77]Hamard PJ, Boyer-Guittaut M, Camuzeaux B, Dujardin D, Hauss C, Oelgeschlager T et al.. Sumoylation delays the ATF7 transcription factor subcellular localization and inhibits its transcriptional activity. Nucleic Acids Res. 2007; 35(4):1134-44.
  • [78]Van Nguyen T, Angkasekwinai P, Dou H, Lin FM, Lu LS, Cheng J et al.. SUMO-specific protease 1 is critical for early lymphoid development through regulation of STAT5 activation. Mol Cell. 2012; 45(2):210-21.
  • [79]Desterro JM, Rodriguez MS, Hay RT. SUMO-1 modification of IkappaBalpha inhibits NF-kappaB activation. Mol Cell. 1998; 2(2):233-9.
  • [80]Yang SH, Sharrocks AD. SUMO promotes HDAC-mediated transcriptional repression. Mol Cell. 2004; 13(4):611-7.
  • [81]David G, Neptune MA, DePinho RA. SUMO-1 modification of histone deacetylase 1 (HDAC1) modulates its biological activities. J Biol Chem. 2002; 277(26):23658-63.
  • [82]Sramko M, Markus J, Kabat J, Wolff L, Bies J. Stress-induced inactivation of the c-Myb transcription factor through conjugation of SUMO-2/3 proteins. J Biol Chem. 2006; 281(52):40065-75.
  • [83]Goodson ML, Hong Y, Rogers R, Matunis MJ, Park-Sarge OK, Sarge KD. Sumo-1 modification regulates the DNA binding activity of heat shock transcription factor 2, a promyelocytic leukemia nuclear body associated transcription factor. J Biol Chem. 2001; 276(21):18513-8.
  • [84]Hong Y, Rogers R, Matunis MJ, Mayhew CN, Goodson ML, Park-Sarge OK et al.. Regulation of heat shock transcription factor 1 by stress-induced SUMO-1 modification. J Biol Chem. 2001; 276(43):40263-7.
  • [85]Huang TT, Wuerzberger-Davis SM, Wu ZH, Miyamoto S. Sequential modification of NEMO/IKKgamma by SUMO-1 and ubiquitin mediates NF-kappaB activation by genotoxic stress. Cell. 2003; 115(5):565-76.
  • [86]Mabb AM, Wuerzberger-Davis SM, Miyamoto S. PIASy mediates NEMO sumoylation and NF-kappaB activation in response to genotoxic stress. Nat Cell Biol. 2006; 8(9):986-93.
  • [87]De Virgilio C, Loewith R. Cell growth control: little eukaryotes make big contributions. Oncogene. 2006; 25(48):6392-415.
  • [88]Willis IM, Moir RD. Integration of nutritional and stress signaling pathways by Maf1. Trends Biochem Sci. 2007; 32(2):51-3.
  • [89]Loewith R, Hall MN. Target of rapamycin (TOR) in nutrient signaling and growth control. Genetics. 2011; 189(4):1177-201.
  • [90]Fullgrabe J, Klionsky DJ, Joseph B. The return of the nucleus: transcriptional and epigenetic control of autophagy. Nat Rev Mol Cell Biol. 2014; 15(1):65-74.
  • [91]Garbett KA, Tripathi MK, Cencki B, Layer JH, Weil PA. Yeast TFIID serves as a coactivator for Rap1p by direct protein-protein interaction. Mol Cell Biol. 2007; 27(1):297-311.
  • [92]Knight B, Kubik S, Ghosh B, Bruzzone MJ, Geertz M, Martin V et al.. Two distinct promoter architectures centered on dynamic nucleosomes control ribosomal protein gene transcription. Genes Dev. 2014; 28(15):1695-709.
  • [93]Schawalder SB, Kabani M, Howald I, Choudhury U, Werner M, Shore D. Growth-regulated recruitment of the essential yeast ribosomal protein gene activator Ifh1. Nature. 2004; 432(7020):1058-61.
  • [94]Wade JT, Hall DB, Struhl K. The transcription factor Ifh1 is a key regulator of yeast ribosomal protein genes. Nature. 2004; 432(7020):1054-8.
  • [95]Chymkowitch P, Nguea PA, Aanes H, Koehler C, Thiede B, Lorenz S et al. Sumoylation of Rap1 mediates the recruitment of TFIID to promote transcription of ribosomal protein genes. Genome research. 2015. doi:10.1101/gr.185793.114.
  • [96]Lamoliatte F, Caron D, Durette C, Mahrouche L, Maroui MA, Caron-Lizotte O et al.. Large-scale analysis of lysine SUMOylation by SUMO remnant immunoaffinity profiling. Nat Commun. 2014; 5:5409.
  • [97]Tatham MH, Matic I, Mann M, Hay RT. Comparative proteomic analysis identifies a role for SUMO in protein quality control. Sci Signal. 2011; 4(178):rs4.
  • [98]Golebiowski F, Matic I, Tatham MH, Cole C, Yin Y, Nakamura A et al.. System-wide changes to SUMO modifications in response to heat shock. Sci Signal. 2009; 2(72):ra24.
  • [99]Wen D, Xu Z, Xia L, Liu X, Tu Y, Lei H et al.. Important role of SUMOylation of Spliceosome factors in prostate cancer cells. J Proteome Res. 2014; 13(8):3571-82.
  • [100]Rohira AD, Chen CY, Allen JR, Johnson DL. Covalent small ubiquitin-like modifier (SUMO) modification of Maf1 protein controls RNA polymerase III-dependent transcription repression. J Biol Chem. 2013; 288(26):19288-95.
  • [101]Lescasse R, Pobiega S, Callebaut I, Marcand S. End-joining inhibition at telomeres requires the translocase and polySUMO-dependent ubiquitin ligase Uls1. EMBO J. 2013; 32(6):805-15.
  • [102]Hendriks IA, Treffers LW, Verlaan-de Vries M, Olsen JV, Vertegaal AC. SUMO-2 Orchestrates Chromatin Modifiers in Response to DNA Damage. Cell reports. 2015. doi:10.1016/j.celrep.2015.02.033.
  • [103]Smolka MB, Albuquerque CP, Chen SH, Zhou H. Proteome-wide identification of in vivo targets of DNA damage checkpoint kinases. Proceedings of the National Academy of Sciences of the United States of America. 2007;104(25):10364–9. doi:0701622104 10.1073/pnas.0701622104.
  • [104]Holt LJ, Tuch BB, Villen J, Johnson AD, Gygi SP, Morgan DO. Global analysis of Cdk1 substrate phosphorylation sites provides insights into evolution. Science. 2009; 325(5948):1682-6.
  • [105]Swaney DL, Beltrao P, Starita L, Guo A, Rush J, Fields S et al.. Global analysis of phosphorylation and ubiquitylation cross-talk in protein degradation. Nat Methods. 2013; 10(7):676-82.
  • [106]Albuquerque CP, Smolka MB, Payne SH, Bafna V, Eng J, Zhou H. A multidimensional chromatography technology for in-depth phosphoproteome analysis. Molecular & cellular proteomics : MCP. 2008;7(7):1389–96. doi:M700468-MCP200 10.1074/mcp.M700468-MCP200.
  • [107]Lin CH, Liu SY, Lee EH. SUMO modification of Akt regulates global SUMOylation and substrate SUMOylation specificity through Akt phosphorylation of Ubc9 and SUMO1. Oncogene. 2015.
  • [108]Knipscheer P, Flotho A, Klug H, Olsen JV, van Dijk WJ, Fish A et al.. Ubc9 sumoylation regulates SUMO target discrimination. Mol Cell. 2008; 31(3):371-82.
  • [109]Su YF, Yang T, Huang H, Liu LF, Hwang J. Phosphorylation of Ubc9 by Cdk1 enhances SUMOylation activity. PLoS One. 2012; 7(4): Article ID e34250
  • [110]Enserink JM, Kolodner RD. An overview of Cdk1-controlled targets and processes. Cell Div. 2010;5:11. doi:1747-1028-5-11 10.1186/1747-1028-5-11.
  • [111]Liu B, Yang Y, Chernishof V, Loo RR, Jang H, Tahk S et al.. Proinflammatory stimuli induce IKKalpha-mediated phosphorylation of PIAS1 to restrict inflammation and immunity. Cell. 2007; 129(5):903-14.
  • [112]Lewicki MC, Srikumar T, Johnson E, Raught B. The S. cerevisiae SUMO stress response is a conjugation-deconjugation cycle that targets the transcription machinery. J Proteomics. 2015; 118:39-48.
  • [113]Das-Bradoo S, Nguyen HD, Wood JL, Ricke RM, Haworth JC, Bielinsky AK. Defects in DNA ligase I trigger PCNA ubiquitylation at Lys 107. Nat Cell Biol. 2010; 12(1):74-9.
  文献评价指标  
  下载次数:82次 浏览次数:14次