期刊论文详细信息
Immunity & Ageing
Heat shock proteins and hormesis in the diagnosis and treatment of neurodegenerative diseases
Vittorio Calabrese5  Edward J. Calabrese3  Agostino Serra4  Luigi Maiolino4  Antonino Petralia6  Cateno Concetto Petralia1  Maria Laura Ontario5  Paola Di Mauro4  Guido Koverech5  Cesare Mancuso2  Sandro Dattilo5 
[1] University College London Hospitals, NHS Foundation Trust, London, UK;Institute of Pharmacology, Catholic University School of Medicine, Rome, Italy;Environmental Health Sciences Division, School of Public Health, University of Massachusetts, Amherst, MA, USA;Department of Medical and Surgery Specialties, University of Catania, Catania, Italy;Department of Biomedical and Biotechnological Sciences, University of Catania, Via Andrea Doria, Catania, 95100, Italy;Department of Clinical and Experimental Medicine, School of Medicine, University of Catania, Catania, Italy
关键词: Vitagenes;    Neurodegenerative disorders;    Bilirubin;    Oxidative stress;    Heme oxygenase;    Heat shock proteins;    Alzheimer’s disease;   
Others  :  1230783
DOI  :  10.1186/s12979-015-0046-8
 received in 2015-08-01, accepted in 2015-10-15,  发布年份 2015
PDF
【 摘 要 】

Modulation of endogenous cellular defense mechanisms via the vitagene system represents an innovative approach to therapeutic intervention in diseases causing chronic tissue damage, such as in neurodegeneration. The possibility of high-throughoutput screening using proteomic techniques, particularly redox proteomics, provide more comprehensive overview of the interaction of proteins, as well as the interplay among processes involved in neuroprotection. Here by introducing the hormetic dose response concept, the mechanistic foundations and applications to the field of neuroprotection, we discuss the emerging role of heat shock protein as prominent member of vitagene network in neuroprotection and redox proteomics as a tool for investigating redox modulation of stress responsive vitagenes. Hormetic mechanisms are reviewed as possibility of targeted therapeutic manipulation in a cell-, tissue- and/or pathway-specific manner at appropriate points in the neurodegenerative disease process.

【 授权许可】

   
2015 Dattilo et al.

【 预 览 】
附件列表
Files Size Format View
20151107090149942.pdf 1178KB PDF download
Figure 3. 61KB Image download
Fig. 2. 21KB Image download
Fig. 1. 81KB Image download
【 图 表 】

Fig. 1.

Fig. 2.

Figure 3.

【 参考文献 】
  • [1]Calabrese V, Cornelius C, Rizzarelli E, Owen JB, Dinkova-Kostova AT, Butterfield DA. Nitric oxide in cell survival: a janus molecule. Antioxid Redox Signal. 2009; 11:2717-39.
  • [2]Calabrese V, Guagliano E, Sapienza M, Panebianco M, Calafato S, Puleo E et al.. Redox regulation of cellular stress response in aging and neurodegenerative disorders: role of vitagenes. Neurochem Res. 2007; 32:757-73.
  • [3]Morimoto RI. The heat shock response: systems biology of proteotoxic stress in aging and disease. Cold Spring Harb Symp Quant Biol. 2011; 76:91-9.
  • [4]Calabrese V, Cornelius C, Mancuso C, Lentile R, Stella AM, Butterfield DA. Redox homeostasis and cellular stress response in aging and neurodegeneration. Methods Mol Biol. 2010; 610:285-308.
  • [5]Giffard RG, Macario AJ, de Macario EC. The future of molecular chaperones and beyond. J. Clin. Invest. 2013; 123(8):3206-8.
  • [6]Morimoto RI, Cuervo AM. Proteostasis and the aging proteome in health and disease. J Gerontol A Biol Sci Med Sci. 2014; 69 Suppl 1:S33-8.
  • [7]Calabrese V, Cornelius C, Mancuso C, Barone E, Calafato S, Bates T et al.. Vitagenes, dietary antioxidants and neuroprotection in neurodegenerative diseases. Front Biosci. 2009; 14:376-97.
  • [8]Calamini B, Silva MC, Madoux F, Hutt DM, Khanna S, Chalfant MA et al.. Small-molecule proteostasis regulators for protein conformational diseases. Nat Chem Bio. 2011; 8(2):185-96.
  • [9]Kansanen E, Bonacci G, Schopfer FJ, Kuosmanen SM, Tong KI, Leinonen H et al.. Electrophilic nitro-fatty acids activate NRF2 by a KEAP1 cysteine 151-independent mechanism. J Biol Chem. 2011; 286(16):14019-27.
  • [10]Raynes R, Brunquell J, Westerheide SD. Stress Inducibility of SIRT1 and Its Role in Cytoprotection and Cancer. Genes Cancer. 2013; 4(3–4):172-82.
  • [11]Ryno LM, Genereux JC, Naito T, Morimoto RI, Powers ET, Shoulders MD et al.. Characterizing the altered cellular proteome induced by the stress-independent activation of heat shock factor 1. ACS Chem Biol. 2014; 9(6):1273-83.
  • [12]Kikis EA, Gidalevitz T, Morimoto RI. Protein homeostasis in models of aging and age-related conformational disease. Adv Exp Med Biol. 2010; 694:138-59.
  • [13]Leak RK. Heat shock proteins in neurodegenerative disorders and aging. J Cell Commun Signal. 2014; 8(4):293-310.
  • [14]Van Oosten-Hawle P, Morimoto RI. Organismal proteostasis: role of cell-nonautonomous regulation and transcellular chaperone signaling. Genes Dev. 2014; 28(14):1533-43.
  • [15]Batulan Z, Taylor DM, Aarons RJ, Minotti S, Doroudchi MM, Nalbantoglu J et al.. Induction of multiple heat shock proteins and neuroprotection in a primary culture model of familial amyotrophic lateral sclerosis. Neurobiol Dis. 2006; 24(2):213-25.
  • [16]Calderwood SK. HSF1, a versatile factor in tumorogenesis. Curr Mol Med. 2012; 12(9):1102-7.
  • [17]Calderwood SK, Murshid A, Prince T. The shock of aging: molecular chaperones and the heat shock response in longevity and aging--a mini-review. Gerontology. 2009; 55:550-8.
  • [18]Gidalevitz T, Prahlad V, Morimoto RI. The stress of protein misfolding: from single cells to multicellular organisms. Cold Spring Harb Perspect Biol. 2011;3(6). doi:10.1101/cshperspect.a009704.
  • [19]Westerheide SD, Raynes R, Powell C, Xue B, Uversky VN. HSF transcription factor family, heat shock response, and protein intrinsic disorder. Curr Protein Pept Sci. 2012; 13(1):86-103.
  • [20]Broadley SA, Hartl FU. The role of molecular chaperones in human misfolding diseases. FEBS Lett. 2009; 583(16):2647-53.
  • [21]Labbadia J, Morimoto RI. Proteostasis and longevity: when does aging really begin? F1000Prime Rep. 2014; 6:7.
  • [22]Calabrese V, Cornelius C, Mancuso C, Pennisi G, Calafato S, Bellia F et al.. Cellular stress response: a novel target for chemoprevention and nutritional neuroprotection in aging, neurodegenerative disorders and longevity. Neurochem Res. 2008; 33(12):2444-71.
  • [23]Calabrese V, Calafato S, Cornelius C, Mancuso C, and Dinkova-Kostova. A Heme oxygenase: A master vitagene involved in cellular stress response. In: AM Eleuteri, editor. Enzymes and the Cellular Fight Against Oxidation. Research Signpost 2008, 37/661 (2), Fort P.O., Trivandrum-695 023, Kerala, India.
  • [24]Calabrese V, Cornelius C, Dinkova-Kostova AT, Calabrese EJ, Mattson MP. Cellular stress responses, the hormesis paradigm, and vitagenes: novel targets for therapeutic intervention in neurodegenerative disorders. Antioxid Redox Signal. 2010; 13(11):1763-811.
  • [25]Calabrese V, Cornelius C, Dinkova-Kostova AT, Iavicoli I, Di Paola R, Koverech A et al.. Cellular stress responses, hormetic phytochemicals and vitagenes in aging and longevity. Biochim Biophys Acta. 2012; 1822(5):753-83.
  • [26]Calabrese V, Butterfield DA, Stella AM. Aging and oxidative stress response in the CNS. In: Development and Aging Changes in the Nervous System. Handbook of Neurochemistry and Molecular Neurobiology. 2008.128-234.
  • [27]Calabrese V, Cornelius C, Dinkova-Kostova AT, Calabrese EJ. Vitagenes, cellular stress response and acetylcarnitine: relevance to hormesis. Biofactors. 2009; 35:146-60.
  • [28]Mancuso C, Pani G, Calabrese V. Bilirubin: An endogenous scavenger of nitric oxide and reactive nitrogen species. Redox Rep. 2006; 11:207-13.
  • [29]Mancuso C, Barone E, Guido P, Miceli F, Di Domenico F, Perluigi M et al.. Inhibition of lipid peroxidation and protein oxidation by endogenous and exogenous antioxidants in rat brain microsomes in vitro. Neurosci Lett. 2012; 518(2):101-5.
  • [30]Liu D, Gharavi R, Pitta M, Gleichmann M, Mattson MP. Nicotinamide prevents NAD+ depletion and protects neurons against excitotoxicity and cerebral ischemia: NAD+ consumption by SIRT1 may endanger energetically compromised neurons. Neuromolecular Med. 2009; 11:28-42.
  • [31]Liu DJ, Hammer D, Komlos D, Chen KY, Firestein BL, Liu AY. SIRT1 knockdown promotes neural differentiation and attenuates the heat shock response. J Cell Physiol. 2014; 229(9):1224-35.
  • [32]Morimoto RI. Proteotoxic stress and inducible chaperone networks in neurodegenerative disease and aging. Genes Dev. 2008; 22:1427-38.
  • [33]Morimoto RI, Santoro MG. Stress-inducible responses and heat shock proteins: new pharmacologic targets for cytoprotection. Nat Biotechnol. 1998; 16:833-8.
  • [34]Trovato Salinaro A, Cornelius C, Koverech G, Koverech A, Scuto M, Lodato F et al.. Cellular stress response, redox status, and vitagenes in glaucoma: a systemic oxidant disorder linked to Alzheimer’s disease. Front Pharmacol. 2014; 5:129.
  • [35]Haslbeck M, Vierling E. A first line of stress defense: small heat shock proteins and their function in protein homeostasis. J Mol Biol. 2015; 427(7):1537-48.
  • [36]Clerico EM, Tilitsky JM, Meng W, Gierasch LM. How hsp70 molecular machines interact with their substrates to mediate diverse physiological functions. J Mol Biol. 2015; 427(7):1575-88.
  • [37]Macario AJ, Conway de Macario E. Molecular chaperones: multiple functions, pathologies, and potential applications. Front Biosci. 2007; 12:2588-600.
  • [38]Gyurko DM, Soti C, Stetak A, Csermely P. System level mechanisms of adaptation, learning, memory formation and evolvability: the role of chaperone and other networks. Curr Protein Pept Sci. 2014; 15(3):171-88.
  • [39]Mattoo RU, Goloubinoff P. Molecular chaperones are nanomachines that catalytically unfold misfolded and alternatively folded proteins. Cell Mol Life Sci. 2014; 71(17):3311-25.
  • [40]Clare DK, Saibil HR. ATP-driven molecular chaperone machines. Biopolymers. 2013; 99(11):846-59.
  • [41]Macario AJ, Conway de Macario E. Chaperonopathies by Defect, Excess, or Mistake. Ann NY Acad Sci. 2007; 1113:178-91.
  • [42]Cortez L, Sim V. The therapeutic potential of chemical chaperones in protein folding diseases. Prion. 2014;8(2). Epub 2014 May 12.
  • [43]Hipkiss AR. Error-protein metabolism and ageing. Biogerontology. 2009; 10(4):523-9.
  • [44]Akude E, Zherebitskaya E, Chowdhury SK, Smith DR, Dobrowsky RT, Fernyhough P. Diminished superoxide generation is associated with respiratory chain dysfunction and changes in the mitochondrial proteome of sensory neurons from diabetic rats. Diabetes. 2011; 60:288-97.
  • [45]Muchowski PJ, Wacker JL. Modulation of neurodegeneration by molecular chaperones. Nat Rev Neurosci. 2005; 6:11-22.
  • [46]Baseler WA, Dabkowski ER, Williamson CL, Croston TL, Thapa D, Powell MJ et al.. Proteomic alterations of distinct mitochondrial subpopulations in the type 1 diabetic heart: contribution of protein import dysfunction. Am J Physiol Regul Integr Comp Physiol. 2011; 300:R186-200.
  • [47]Chowdhury SK, Dobrowsky RT, Fernyhough P. Nutrient excess and altered mitochondrial proteome and function contribute to neurodegeneration in diabetes. Mitochondrion. 2011; 11:845-54.
  • [48]Saibil HR. Biochemistry. Machinery to reverse irreversible aggregates. Science. 2013; 339(6123):1040-1.
  • [49]Priya S, Sharma SK, Goloubinoff P. Molecular chaperones as enzymes that catalytically unfold misfolded polypeptides. FEBS Lett. 2013; 587(13):1981-7.
  • [50]Bersuker K, Hipp MS, Calamini B, Morimoto RI, Kopito RR. Heat shock response activation exacerbates inclusion body formation in a cellular model of Huntington disease. J Biol Chem. 2013; 288(33):23633-8.
  • [51]Zhang K, Zhao T, Huang X, Liu ZH, Xiong L, Li MM et al.. Preinduction of HSP70 promotes hypoxic tolerance and facilitates acclimatization to acute hypobaric hypoxia in mouse brain. Cell Stress Chaperones. 2009; 14:407-15.
  • [52]Delgado M, Varela N, Gonzalez-Rey E. Vasoactive intestinal peptide protects against beta-amyloid-induced neurodegeneration by inhibiting microglia activation at multiple levels. Glia. 2008; 56:1091-103.
  • [53]Kakimura J, Kitamura Y, Takata K, Umeki M, Suzuki S, Shibagaki K et al.. Microglial activation and amyloid-beta clearance induced by exogenous heat-shock proteins. FASEB J. 2002; 16:601-3.
  • [54]Siciliano R, Barone E, Calabrese V, Rispoli V, Butterfield DA, Mancuso C. Experimental research on nitric oxide and the therapy of Alzheimer disease: a challenging bridge. CNS Neurol Disord Drug Targets. 2011; 10(7):766-76.
  • [55]Bellia F, Vecchio G, Cuzzocrea S, Calabrese V, Rizzarelli E. Neuroprotective features of carnosine in oxidative driven diseases. Mol Aspects Med. 2011; 32(4–6):258-66.
  • [56]Brown IR. Heat shock proteins and protection of the nervous system. Ann NY Acad Sci. 2007; 1113:147-58.
  • [57]Söti C, Csermely P. Protein stress and stress proteins: implications in aging and disease. J Biosci. 2007; 32:511-5.
  • [58]Kim HL, Cassone M, Otvos L, Vogiatzi P. HIF-1alpha and STAT3 client proteins interacting with the cancer chaperone Hsp90: therapeutic considerations. Cancer Biol Ther. 2008; 7:10-4.
  • [59]Muller P, Hrstka R, Coomber D, Lane DP, Vojtesek B. Chaperone-dependent stabilization and degradation of p53 mutants. Oncogene. 2008; 27:3371-83.
  • [60]Okayama S, Kopelovich L, Balmus G, Weiss RS, Herbert BS, Dannenberg AJ et al.. p53 protein regulates Hsp90 ATPase activity and thereby Wnt signalling by modulating Aha1 expression. J Biol Chem. 2014; 289(10):6513-25.
  • [61]Mancuso C, Barone E. The heme oxygenase/biliverdin reductase pathway in drug research and development. Curr Drug Metab. 2009; 10(6):579-94.
  • [62]Maines MD. The heme oxygenase system: a regulator of second messenger gases. Annu Rev Pharmacol Toxicol. 1997; 37:517-54.
  • [63]Maines MD. Heme Oxygenase in Clinical Applications and Functions. CRC Press, Boca Raton; 1992.
  • [64]McCoubrey WK, Huang TJ, Maines MD. Isolation and characterization of a cDNA from the rat brain that encodes hemoprotein heme oxygenase-3. Eur J Biochem. 1997; 247(2):725-32.
  • [65]Maines MD, Panahian N. The heme oxygenase system and cellular defense mechanisms. Do HO-1 and HO-2 have different functions? Adv Exp Med Biol. 2001; 502:249-72.
  • [66]Ryter SW, Choi AM. Carbon monoxide: present and future indications for a medical gas. Korean J Intern Med. 2013; 28(2):123-40.
  • [67]Mancuso C, Navarra P, Preziosi P. Roles of nitric oxide, carbon monoxide, and hydrogen sulfide in the regulation of the hypothalamic-pituitary-adrenal axis. J Neurochem. 2010; 113(3):563-75.
  • [68]Wu L, Wang R. Carbon monoxide: endogenous production, physiological functions, and pharmacological applications. Pharmacol Rev. 2005; 57(4):585-630.
  • [69]Mancuso C, Preziosi P, Grossman AB, Navarra P. The role of carbon monoxide in the regulation of neuroendocrine function. Neuroimmunomodulation. 1997; 4(5–6):225-9.
  • [70]Mancuso C, Scapagnini G, Currò D, Giuffrida Stella AM, De Marco C, Butterfield DA et al.. Mitochondrial dysfunction, free radical generation and cellular stress response in neurodegenerative disorders. Front Biosci. 2007; 12:1107-23.
  • [71]Mancuso C, Capone C, Ranieri SC, Fusco S, Calabrese V, Eboli ML et al.. Bilirubin as an endogenous modulator of neurotrophin redox signaling. J Neurosci Res. 2008; 86(10):2235-49.
  • [72]Barone E, Trombino S, Cassano R, Sgambato A, De Paola B, Di Stasio E et al.. Characterization of the S-denitrosylating activity of bilirubin. J Cell Mol Med. 2009; 13(8B):2365-75.
  • [73]Stocker R. Antioxidant activities of bile pigments. Antioxid Redox Signal. 2004; 6(5):841-9.
  • [74]Minetti M, Mallozzi C, Di Stasi AM, Pietraforte D. Bilirubin is an effective antioxidant of peroxynitrite-mediated protein oxidation in human blood plasma. Arch Biochem Biophys. 1998; 352(2):165-74.
  • [75]Barone E, Di Domenico F, Cenini G, Sultana R, Coccia R, Preziosi P et al.. Oxidative and nitrosative modifications of biliverdin reductase-A in the brain of subjects with Alzheimer’s disease and amnestic mild cognitive impairment. J Alzheimers Dis. 2011; 25(4):623-33.
  • [76]Barone E, Di Domenico F, Sultana R, Coccia R, Mancuso C, Perluigi M et al.. Heme oxygenase-1 posttranslational modifications in the brain of subjects with Alzheimer disease and mild cognitive impairment. Free Radic Biol Med. 2012; 52(11–12):2292-301.
  • [77]Barone E, Cenini G, Di Domenico F, Martin S, Sultana R, Mancuso C et al.. Long-term high-dose atorvastatin decreases brain oxidative and nitrosative stress in a preclinical model of Alzheimer disease: a novel mechanism of action. Pharmacol Res. 2011; 63(3):172-80.
  • [78]Butterfield DA, Barone E, Di Domenico F, Cenini G, Sultana R, Murphy MP et al.. Atorvastatin treatment in a dog preclinical model of Alzheimer’s disease leads to up-regulation of heme oxygenase-1 and is associated with reduced oxidative stress in brain. Int J Neuropsychopharmacol. 2012; 15(7):981-7.
  • [79]Barone E, Mancuso C, Di Domenico F, Sultana R, Murphy MP, Head E et al.. Biliverdin reductase-A: a novel drug target for atorvastatin in a dog pre-clinical model of Alzheimer disease. J Neurochem. 2012; 120(1):135-46.
  • [80]Barone E, Di Domenico F, Mancuso C, Butterfield DA. The Janus face of the heme oxygenase/biliverdin reductase system in Alzheimer disease: it’s time for reconciliation. Neurobiol Dis. 2014; 62:144-59.
  • [81]Butterfield DA, Barone E, Mancuso C. Cholesterol-independent neuroprotective and neurotoxic activities of statins: perspectives for statin use in Alzheimer disease and other age-related neurodegenerative disorders. Pharmacol Res. 2011; 64(3):180-6.
  • [82]Abete P, Testa G, Cacciatore F, Della-Morte D, Galizia G, Langellotto A et al.. Ischemic preconditioning in the younger and aged heart. Aging Dis. 2011; 2(2):138-48.
  • [83]Schulz H. Uber Hefegifte. Pfluger’s Archiv Gesemmte Physiol. 1888; 42:517-41.
  • [84]Calabrese EJ. Hormetic mechanisms. Crit Rev Toxicol. 2013; 43(7):580-606.
  • [85]Mitchel RE, Hasu M, Bugden M, Wyatt H, Hildebrandt G, Chen YX et al.. Low-dose radiation exposure and protection against atherosclerosis in ApoE(−/−) mice: the influence of P53 heterozygosity. Radiat Res. 2013; 179(2):190-9.
  • [86]Blyth BJ, Azzam EI, Howell RW, Ormsby RJ, Staudacher AH, Sykes PJ. An adoptive transfer method to detect low-dose radiation-induced bystander effects in vivo. Radiat Res. 2010; 173(2):125-37.
  • [87]Phan N, Boreham DR. Health effects from low dose occupational and medical radiation exposure and the role of adaptive response. Health Phys. 2011; 100(3):286-7.
  • [88]Mothersill C, Seymour C. Implications for human and environmental health of low doses of ionising radiation. J Environ Radioact. 2014; 133:5-9.
  • [89]Nomura T, Sakai K, Ogata H, Magae J. Prolongation of life span in the accelerated aging klotho mouse model, by low-dose-rate continuous γ irradiation. Radiat Res. 2013; 179(6):717-24.
  • [90]Scott BR. Radiation-hormesis phenotypes, the related mechanisms and implications for disease prevention and therapy. J Cell Commun Signal. 2014; 8(4):341-52.
  • [91]Elmore E, Lao XY, Kapadia R, Swete M, Redpath JL. Neoplastic transformation in vitro by mixed beams of high-energy iron ions and protons. Radiat Res. 2011; 176(3):291-302.
  • [92]Calabrese EJ. Origin of the linearity no threshold (LNT) dose–response concept. Arch Toxicol. 2013; 87(9):1621-33.
  • [93]Calabrese EJ. Low doses of radiation can enhance insect lifespans. Biogerontology. 2013; 14(4):365-81.
  • [94]Calabrese EJ. Hormesis and homeopathy: introduction. Hum Exp Toxicol. 2010; 29(7):527-9.
  • [95]Calabrese EJ, Calabrese V. Low dose radiation therapy (LD-RT) is effective in the treatment of arthritis: animal model findings. Int J Radiat Biol. 2013; 89(4):287-94.
  • [96]Calabrese EJ, Iavicoli I, Calabrese V. Hormesis: its impact on medicine and health. Hum Exp Toxicol. 2013; 32(2):120-52.
  • [97]Calabrese EJ. Historical foundations of wound healing and its potential for acceleration: doseresponse considerations. Wound Repair Regen. 2013; 21(2):180-93.
  • [98]Stebbing AR. Interpreting ‘dose-response’ curves using homeodynamic data: with an improved explanation for hormesis. Dose Response. 2009; 7(3):221-33.
  • [99]Sagan LA. On radiation, paradigms, and hormesis. Science. 1989; 245:574-621.
  • [100]Calabrese EJ. Cancer risk assessment: Optimizing human health through linear dose–response models. Food Chem Toxicol. 2015; 81:137-40.
  • [101]Luckey TD. Radiation hormesis: the good, the bad, and the ugly. Dose Response. 2006; 4(3):169-90.
  • [102]Thong H-Y, Maibach HI. Hormesis [biological effects of low level exposure (BELLE)] and dermatology. Dose-Response. 2008; 6:1-15.
  • [103]Calabrese V, Scapagnini G, Davinelli S, Koverech G, Koverech A, De Pasquale Salinaro AT et al.. Sex hormonal regulation and hormesis in aging and role of vitagenes. J Cell Commun Signal. 2014; 8(4):369-84.
  • [104]Eaton DL and Klaassen CD. Principles of toxicology. In: Casarett & Doull’s Essentials of Toxicology, Chapter 2. The McGraw-Hill Companies, Inc. pp. 6–20.
  • [105]Calabrese V, Butterfield DA, Stella AM. Aging and oxidative stress response in the CNS. In: Development and Aging Changes in the Nervous System. Handbook ofNeurochemistry and Molecular Neurobiology. 2008.128-234.
  • [106]Calabrese EJ, Dhawan G, Kapoor R, Iavicoli I, Calabrese V. What is hormesis and its relevance to healthy aging and longevity? Biogerontology. 2015;16(6):693-707
  • [107]Calabrese EJ. Evidence that hormesis represents an “overcompensation” response to a disruption in homeostasis. Ecotoxicol Environ Saf. 1999; 42:135-7.
  • [108]Calabrese EJ, Baldwin LA. Chemical hormesis: Its historical foundations as a biological hypothesis. Hum Exper Toxicol. 2000; 19:2-31.
  • [109]Calabrese EJ. Hormesis: Toxicological foundations and role in aging research. Exp Gerontol. 2013; 48(1):99-102.
  • [110]Calabrese EJ, Blain RB. Hormesis and plant biology. Environ. Poll. 2009; 157:42-8.
  • [111]Calabrese EJ, Baldwin LA. The hormetic dose response model is more common than the threshold model in toxicology. Tox Sci. 2003; 71:246-50.
  • [112]Calabrese EJ, Baldwin LA. Ethanol and hormesis. Crit Rev Toxicol. 2003; 33:407-24.
  • [113]Calabrese EJ, Bachmann KA, Bailer AJ, Bolger PM, Borak J, Cai L et al.. Biological stress response terminology: Integrating the concepts of adaptive response and preconditioning stress within a hormetic dose–response framework. Toxicol Appl Pharmacol. 2007; 222:122-8.
  • [114]Rattan SIS. Hormetic modulation of aging and longevity by mild heat stress. Dose Response. 2005; 3:533-46.
  • [115]Rattan SIS. Targeting the age-related occurrence, removal, and accumulation of molecular damage by hormesis. Ann N Y Acad Sci. 2010; 1197:28-32.
  • [116]Rattan SIS, Ali RE. Hormetic prevention of molecular damage during cellular aging of human skin fibroblasts and keratinocytes. Ann N Y Acad Sci. 2007; 1100:424-30.
  • [117]Rattan SIS, Gonzalez-Dosal R, Nielsen ER, Kraft DC, Weibel J, Kahns S. Slowing down aging from within: Mechanistic aspect of anti-aging hormetic effects of mild heat stress on human cells. Acta Biochimica Polonica. 2004; 51(2):481-92.
  • [118]Sarup P, Sorensen P, Loeschcke V. The long-term effects of a life-prolonging heat treatment on the Drosophila melanogaster transcriptome suggest that heat shock proteins extend lifespan. Exp Gerontol. 2014; 50:34-9.
  • [119]Arumugam TV, Gleichmann M, Tang SC et al.. Hormesis/preconditioning mechanisms, the nervous system and aging. Ageing Res Rev. 2006; 5(2):165-78.
  • [120]Mattson MP. Hormesis and disease resistance: activation of cellular stress response pathways. Hum Exp Toxicol. 2008; 27(2):155-62.
  • [121]Mattson MP, Chan SL, Duan WZ. Modification of brain aging and neurodegenerative disorders by genes, diet, and behavior. Physiol Rev. 2002; 82(3):637-72.
  • [122]Okun E, Mattson MP. Neuronal vulnerability to oxidative damage in aging. In: Oxidative Neural Injury Book Series: Contemporary Clinical Neuroscience. 2009.83-95.
  • [123]Flood JF, Smith GE, Cherkin A. Memory retention – Potentiation of cholinergic drugcombinations in mice. Neurobiol Aging. 1983; 4:37-43.
  • [124]Flood JF, Smith GE, Cherkin A. Memory enhancement – Supra-additive effect of subcutaneous chlolinergic drug-combinations in mice. Psychopharmacology. 1985; 86:61-7.
  • [125]Calabrese EJ. Neuroscience and Hormesis: Overview and general findings. Crit Rev Toxicol. 2008; 38:249-52.
  • [126]Calabrese EJ, Baldwin LA. Hormesis and high risk groups. Reg. Tox. Pharm. 2002; 35:14-428.
  • [127]Calabrese EJ. Cancer biology and hormesis: Human tumore cell lines commonly display hormetic (biphasic) dose responses. Crit Rev Toxicol. 2005; 35:463-582.
  • [128]Randall WA, Price CW, Welch H. Demonstration of hormesis (increase in fatality rate) by penicillin. Am J Pub Health. 1947; 37:421-5.
  • [129]Welch H, Price CW, Randall WA. Increase in fatality rate of E. Typhosa for white mice by streptomycin. J Am Pharm. 1946; 35:155-8.
  • [130]Abramowitz J, Dai C, Hirschi KK, Dmitieva RI, Doris PA, Liu L et al.. Ouabain- and marinobufagenin-induced proliferation of human umbilical vein smooth muscle cells and a rat vascular smooth muscle cell lines, A7r5. Circulation. 2003; 108:3048-53.
  • [131]Chueh S-C, Guh J-H, Chen J, Lai M-K, Teng C-M. Dual effects of ouabain on the regulation of proliferation and apoptosis in human prostatic smooth muscle cells. J Urol. 2001; 166:347-53.
  • [132]Calabrese EJ. An assessment of anxiolytic drug screening tests: hormetic dose responses predominate. Crit Rev Toxicol. 2008; 38(6):489-542.
  • [133]Calabrese EJ. Modulation of the epileptic seizure threshold: implications of biphasic dose responses. Crit Rev Toxicol. 2008; 38(6):543-56.
  • [134]Calabrese EJ. Pain and U-shaped dose responses: occurrence, mechanisms, and clinical implications. Crit Rev Toxicol. 2008; 38(7):579-90.
  • [135]Calabrese EJ. Alzheimer’s disease drugs: an application of the hormetic dose-response model. Crit Rev Toxicol. 2008; 38(5):419-51.
  • [136]Calabrese EJ. Drug therapies for stroke and traumatic brain injury often display U-shaped dose responses: occurrence, mechanisms, and clinical implications. Crit Rev Toxicol. 2008; 38(6):557-77.
  • [137]Calabrese EJ. Enhancing and regulating neurite outgrowth. Crit Rev Toxicol. 2008; 38(4):391-418.
  • [138]Calabrese EJ. Astrocytes: adaptive responses to low doses of neurotoxins. Crit Rev Toxicol. 2008; 38(5):463-71.
  • [139]Puzzo D, Privitera L, Palmeri A. Hormetic effect of amyloid-beta peptide in synaptic plasticity and memory. Neurobiol Aging. 2012; 33:1484.
  • [140]Zhang Y, Lu R, Liu W, Wu Y, Qian H, Zhao X et al.. Hormetic effects of acute methylmercury exposure on GRP78 expression in rat brain cortex. Dose–response. 2013; 11:109-20.
  • [141]Ali RE, Rattan SIS. Curcumin’s biphasic hormetic response on proteasome activity and heat-shock protein synthesis in human keratinocytes. Ann NY Acad Sci. 2006; 1067:394-9.
  • [142]Nánási PP, Sarkozi S, Szigeti G, Jona I, Szegedi C, Szabo A et al.. Biphasic effect of bimoclomol on calcium handling in mammalian ventricular myocardium. Brit J Pharmacol. 2000; 129:1405-12.
  • [143]Wang CR, Tian Y, Wang XR, Yu HX, Lu XW, Wang C et al.. Hormesis effects and implicative application in assessment of lead-contaminated soils in roots of Vicia faba seedlings. Chemosphere. 2010; 80:965-71.
  • [144]Xu X, Huang Z, Wang C, Zhong L, Tian Y, Li D et al.. Toxicological effects, mechanisms, and implied toxicity threshold in the roots of Vicia faba L. seedlings grown in copper-contaminated soil. Environ Sci Pollut Res. 2015; 22:13858-69.
  • [145]Baruah K, Norouzitallab P, Linayati L, Sorgeloos P, Bossier P. Reactive oxygen species generated by a heat shock protein (Hsp) inducing product contributes to Hsp70 production and Hsp70-mediated protective immunity in Artemia franciscana against pathogenic vibrios. Dev Comp Immunol. 2014; 46:470-9.
  • [146]Lagisz M, Hector KL, Nakagawa S. Life extension after heat shock exposure: assessing meta-analytic evidence for hormesis. Age Res Rev. 2013; 12:653-60.
  • [147]Hranitz JM, Abramson CI, Carter RP. Ethanol increases HSP70 concentrations in honeybee (Apis mellifera L.) brain tissue. Alcohol. 2010; 44:275-82.
  • [148]Damelin LH, Vokes S, Whitcutt JM, Damelin SB, Alexander JJ. Hormesis: a stress response in cells exposed to low levels of heavy metals. Hum Exper Toxicol. 2000; 19:420-30.
  • [149]Sutton DJ, Tchounwou PB, Ninashvili N, Shen E. Mercury induced cytotoxicity and transcriptionally activates stress genes in human liver carcinoma (HepG2) cells. Int J Mol Sci. 2002; 3:965-84.
  • [150]Shutoh Y, Takeda M, Ohtsuka R, Haishima A, Yamaguchi S, Fujie H et al.. Low dose effects of dichlorodiphenyltrichloroethane (DDT) on gene transcription and DNA methylation in the hypothalamus of young male rats: implication of hormesis-like effects. J Toxicol Sci. 2009; 34(5):469-82.
  • [151]Li SQ, Wang DM, Shu YJ, Wan XD, Xu ZS, Li EZ. Proper heat shock pretreatment reduces acute liver injury induced by carbon tetrachloride and accelerates liver repair in mice. J Toxicol Pathol. 2013; 26:363-73.
  • [152]Joyeux M, Godin-Ribuot D, Patel A, Demenge P, Yellon DM, Ribuot C. Infarct size-reducing effect of heat stress and a1 adrenoceptors in rats. Brit J Pharmacol. 1998; 125:645-50.
  • [153]Joyeux M, Lagneux C, Bricca G, Yellon DM, Demenge P, Ribuot C. Heat stress-induced resistance to myocardial infarction in the isolated heart from transgenic [(mREN-2)27] hypertensive rats. Cardio Res. 1998; 40:124-30.
  • [154]Joyeux M, Arnaud C, Godin-Ribuot D, Demenge P, Lamontagne D, Ribuot C. Endocannabinoids are implicated in the infarct size-reducing effect conferred by heat stress preconditioning in isolated rat hearts. Cardio Res. 2002; 55:619-25.
  • [155]Patel HH, Hsu A, Gross GJ. Attenuation of heat shock-induced cardioprotection by treatment with the opiate receptor antagonist naloxone. Am J Physiol Heart Circ Physiol. 2002; 282:H2011-7.
  • [156]Mann M, Jensen ON. Proteomic analysis of post-translational modifications. Nat Biotechnol. 2003; 21:255-61.
  • [157]Zhou H, Watts JD, Aebersold R. A systematic approach to the analysis of protein phosphorylation. Nat Biotechnol. 2001; 19:375-8.
  • [158]Shelton MD, Mieyal JJ. Regulation by reversible S-glutathionylation: molecular targets implicated in inflammatory diseases. Mol Cells. 2008; 25(3):332-46.
  • [159]Chakravarti B, Chakravarti DN. Oxidative modification of proteins: age-related changes. Gerontology. 2007; 53:128-39.
  • [160]Valko M, Rhodes CJ, Moncol J, Izakovic M, Mazur M. Free radicals, metals and antioxidants in oxidative stress-induced cancer. Chem Biol Interact. 2006; 160:1-40.
  • [161]Butterfield DA, Abdul HM, Newman S, Reed T. Redox proteomics in some age-related neurodegenerative disorders or models thereof. NeuroRx. 2006; 3:344-57.
  • [162]Berlett BS, Stadtman ER. Protein oxidation in aging, disease, and oxidative stress. J Biol Chem. 1997; 272:20313-6.
  • [163]Butterfield DA, Sultana R. Redox proteomics: Understanding oxidative stress in the progression of age-related neurodegenerative disorders. Expert Rev Proteomics. 2008; 5:157-60.
  • [164]Butterfield DA, Perluigi M, Reed T, Muharib T, Hughes CP, Robinson RA et al.. Redox proteomics in selected neurodegenerative disorders: From its infancy to future applications. Antioxid Redox Signal. 2012; 17:1610-55.
  • [165]Stadtman ER, Levine RL. Chemical modification of proteins by reactive oxygen species. In: Redox proteomics: from protein modifications to cellular dysfunction and diseases. Dalle-Donne I, Scaloni A, Butterfield A, editors. John Wiley & Sons Inc., Hoboken; 2006: p.3-23.
  • [166]Barone E, Di Domenico F, Cenini G, Sultana R, Cini C, Preziosi P et al.. Biliverdin reductase-A protein levels and activity in the brains of subjects with Alzheimer disease and mild cognitive impairment. Biochimica et Biophysica Acta. 2011; 1812(4):480-7.
  • [167]Colzani M, Aldini G, Carini M. Mass spectrometric approaches for the identification and quantification of reactive carbonyl species protein adducts. J Proteomics. 2013; 92:28-50.
  • [168]Colzani M, Criscuolo A, De Maddis D, Garzon D, Yeum KJ, Vistoli G et al.. A novel high resolution MS approach for the screening of 4-hydroxy-trans-2-nonenal sequestering agents. J Pharm Biomed Anal. 2014; 91:108-18.
  • [169]Baraibar MA, Ladouce R, Friguet B. Proteomic quantification and identification of carbonylated proteins upon oxidative stress and during cellular aging. J Proteomics. 2013; 92:63-70.
  • [170]Li J, Liu D, Sun L, Lu Y, Zhang Z. Advanced glycation end products and neurodegenerative diseases: mechanisms and perspective. J Neurol Sci. 2012; 317(1–2):1-5.
  • [171]Baynes JW, Gillery P. Frontiers in research on the Maillard reaction in aging and chronic disease. Clin Chem Lab Med. 2014; 52(1):1-3.
  • [172]Butterfield DA, Castegna A, Lauderback CM, Drake J. Evidence that amyloid β-peptide-induced lipid peroxidation and its sequelae in Alzheimer’s disease brain contribute to neuronal death. Neurobiol. Aging. 2002; 23:655-64.
  • [173]Shichiri M. The role of lipid peroxidation in neurological disorders. J. Clin. Biochem. Nutr. 2014; 54:151-60.
  • [174]Mark RJ, Lovell MA, Markesbery WR, Uchida K, Mattson MP. A role for 4-hydroxynonenal, an aldehydic product of lipid peroxidation, in disruption of ion homeostasis and neuronal death induced by amyloid β-peptide. J. Neurochem. 1997; 68:255-64.
  • [175]Subramaniam R, Roediger F, Jordan B, Mattson MP, Keller JN, Waeg G et al.. The lipid peroxidation product, 4-hydroxy-2-trans-nonenal, alters the conformation of cortical synaptosomal membrane proteins. J Neurochem. 1997; 69:1161-9.
  • [176]Sultana R, Butterfield DA. Proteomics identification of carbonylatedand HNE-bound brain proteins in Alzheimer’s disease. Methods Mol Biol. 2009; 566:123-35.
  • [177]Reed TT. Lipid peroxidation and neurodegenerative disease. Free Radic Biol Med. 2011; 51:1302-19.
  • [178]Markesbery WR, Lovell MA. Four-hydroxynonenal, a product of lipid peroxidation, is increased in the brain in Alzheimer’s disease. Neurobiol Aging. 1998; 19:33-6.
  • [179]Groitl B, Jakob U. Thiol-based redox switches. Biochim. Biophys. Acta. 1844; 2014:1335-42.
  • [180]Ghezzi P. Oxidoreduction of protein thiols in redox regulation. Biochem. Soc. Trans. 2005; 33:1378-81.
  • [181]Giustarini D, Rossi R, Milzani A, Colombo R, Dalle-Donne I. Sglutathionylation: From redox regulation of protein functions to human diseases. J Cell Mol Med. 2004; 8:201-12.
  • [182]Grune T, Reinheckel T, Davies KJ. Degradation of oxidized proteins in mammalian cells. FASEB J. 1997; 11:526-34.
  • [183]Sheehan D. Detection of redox-based modification in two-dimensional electrophoresis proteomic separations. Biochem Biophys Res Commun. 2006; 349:455-62.
  • [184]Ghezzi P. Regulation of protein function by glutathionylation. Free Radic. Res. 2005; 39:573-80.
  • [185]Petrushanko IY, Yakushev S, Mitkevich VA, Kamanina YV, Ziganshin RH, Meng X et al.. S-Glutathionylation of the Na, k-atpase catalytic α subunit is a determinant of the enzyme redox sensitivity. J. Biol. Chem. 2012; 287:32195-205.
  • [186]Fratelli M, Demol H, Puype M, Casagrande S, Eberini I, Salmona M et al.. Identification by redox proteomics of glutathionylated proteins in oxidatively stressed human t lymphocytes. Proc. Natl. Acad. Sci. USA. 2002; 99:3505-10.
  • [187]Cabiscol E, Levine RL. The phosphatase activity of carbonic anhydrase III is reversibly regulated by glutathiolation. Proc. Natl. Acad. Sci. USA. 1996; 93:4170-4.
  • [188]Klatt P, Lamas S. Regulation of protein function by S-glutathiolation in response to oxidative and nitrosative stress. Eur J Biochem. 2000; 267(16):4928-44.
  • [189]Pineda-Molina E, Klatt P, Vazquez J, Marina A, Garcia de Lacoba M, Perez-Sala D et al.. Glutathionylation of the p50 subunit of NF-kappaB: a mechanism for redox-induced inhibition of DNA binding. Biochemistry. 2001; 40:14134-42.
  • [190]Davis DA, Newcomb FM, Starke DW, Ott DE, Mieyal JJ, Yarchoan R. Thioltransferase (glutaredoxin) is detected within HIV-1 and can regulate the activity of glutathionylated HIV-1 protease in vitro. J. Biol. Chem. 1997; 272:25935-40.
  • [191]Liang JN, Pelletier MR. Destabilization of lens protein conformation by glutathione mixed disulfide. Exp. Eye Res. 1988; 47:17-25.
  • [192]Ahsan H. 3-Nitrotyrosine: a biomarker of nitrogen free radical species modified proteins in systemic autoimmunogenic conditions. Hum. Immunol. 2013; 74:1392-9.
  • [193]Castegna A, Thongboonkerd V, Klein JB, Lynn B, Markesbery WR, Butterfield DA. Proteomic identification of nitrated proteins in Alzheimer’s disease brain. J Neurochem. 2003; 85:1394-401.
  • [194]Sultana R, Perluigi M, Butterfield DA. Protein oxidation and lipid peroxidation in brain of subjects with Alzheimer’s disease: insights into mechanism of neurodegeneration from redox proteomics. Antioxid Redox Signal. 2006; 8:2021-37.
  • [195]Chait BT. Chemistry. Mass spectrometry: bottom-up or top-down? Science. 2006; 314:65-6.
  • [196]Butterfield DA, Perluigi M, Sultana R. Oxidative stress in Alzheimer’s disease brain: new insights from redox proteomics. Eur J Pharmacol. 2006; 545:39-50.
  • [197]Wittmann-Liebold B, Graack HR, Pohl T. Two-dimensional gelelectrophoresis as tool for proteomics studies in combination with protein identification by mass spectrometry. Proteomics. 2006; 6:4688-703.
  • [198]Kim H, Eliuk S, Deshane J, Meleth S, Sanderson T, Pinner A et al.. 2D gel proteomics: An approach to study age-related differences in protein abundance or isoform complexity in biological samples. Methods Mol Biol. 2007; 371:349-91.
  • [199]Sheehan D, McDonagh B, Barcena JA. Redox proteomics. Expert Rev Proteomics. 2010; 7:1-4.
  • [200]Unlu M, Morgan ME, Minden JS. Difference gel electrophoresis: A single gel method for detecting changes in protein extracts. Electrophoresis. 1997; 18:2071-7.
  • [201]Gharbi S, Gaffney P, Yang A, Zvelebil MJ, Cramer R, Waterfield MD et al.. Evaluation of two-dimensional differential gel electrophoresis for proteomic expression analysis of a model breast cancer cell system. Mol Cell Proteomics. 2002; 1:91-8.
  • [202]Timms JF, Cramer R. Difference gel electrophoresis. Proteomics. 2008; 8:4886-97.
  • [203]Moruz L, Pichler P, Stranzl T, Mechtler K, Kall L. Optimized nonlinear gradients for reversed-phase liquid chromatography in shotgun proteomics. Anal. Chem. 2013; 85:7777-85.
  • [204]Schirmer EC, Yates JR, Gerace L. MudPIT: A powerful proteomics toolfor discovery. Discov. Med. 2003; 3:38-9.
  • [205]Maes K, Smolders I, Michotte Y, Van EA. Strategies to reduce aspecific adsorption of peptides and proteins in liquid chromatography-mass spectrometry based bioanalyses: an overview. J. Chromatogr. A. 2014; 1358:1-13.
  • [206]Stalmach A, Albalat A, Mullen W, Mischak H. Recent advances in capillaryelectrophoresis coupled to mass spectrometry for clinical proteomic applications. Electrophoresis. 2013; 34:1452-64.
  • [207]Addona TA, Abbatiello SE, Schilling B, Skates SJ et al.. Multi-site assessment of the precision and reproducibility of multiple reaction monitoring- based measurements of proteins in plasma. Nat. Biotechnol. 2009; 27:633-41.
  • [208]Lindemann C, Leichert LI. Quantitative redox proteomics: the NOxICAT method. Methods Mol Biol. 2012; 893:387-403.
  • [209]Thompson A, Schafer J, Kuhn K, Kienle S et al.. Tandem mass tags: a novel quantification strategy for comparative analysis of complex protein mixtures by MS/MS. Anal. Chem. 2003; 75:1895-904.
  • [210]Uehara T, Nakamura T, Yao D, Shi ZQ et al.. S-nitrosylated protein-disulphide isomerase links protein misfolding to neurodegeneration. Nature. 2006; 441:513-7.
  • [211]Murray CI, Uhrigshardt H, O'Meally RN, Cole RN et al.. Identification and quantification of S-nitrosylation by cysteine reactive tandem mass tag switch assay. Mol. Cell. Proteomics. 2012; 11:M111.013441.
  • [212]Madian AG, Regnier FE. Proteomic identification of carbonylatedproteins and their oxidation sites. J Proteome Res. 2010; 9:3766-80.
  • [213]Palmese A, De Rosa C, Marino G, Amoresano A. Dansyl labeling and bidimensional mass spectrometry to investigate protein carbonylation. Rapid Commun Mass Spectrom. 2011; 25:223-31.
  • [214]Cornelius C, Perrotta R, Graziano A, Calabrese EJ, Calabrese V. Stress responses, vitagenes and hormesis as critical determinants in aging and longevity: Mitochondria as a “chi”. Immun Ageing. 2013; 10(1):10-5.
  • [215]Pratt WB, Gestwicki JE, Osawa Y, Lieberman AP. Targeting Hsp90/Hsp70-Based Protein Quality Control for Treatment of Adult Onset Neurodegenerative Diseases. Annu Rev Pharmacol Toxicol. 2015; 55:353-71.
  • [216]Calabrese V, Mancuso C, Ravagna A, Perluigi M, Cini C, De Marco C et al.. In vivo induction of heat shock proteins in the substantia nigra following L-DOPA administration is associated with increased activity of mitochondrial complex I and nitrosative stress in rats: regulation by glutathione redox state. J Neurochem. 2007; 101:709-17.
  • [217]Calabrese V. Highlight Commentary on “Redox proteomics analysis of oxidatively 3 modified proteins in G93A–SOD1 transgenic mice—A model of 4 familial amyotrophic lateral sclerosis”. Free Radical Biol Med. 2007; 43:160-2.
  • [218]Calabrese V, Mancuso C, Sapienza M, Puleo E, Calafato S, Cornelius C et al.. Oxidative stress and cellular stress response in diabetic nephropathy. Cell Stress Chaperones. 2007; 12:299-306.
  • [219]Mancuso C, Santangelo R, Calabrese V. The heme oxygenase/biliverdin reductase system: a potential drug target in Alzheimer s disease. J Biol Regul Homeost Agent. 2013; 13:75-87.
  • [220]Currò M, Trovato-Salinaro A, Gugliandolo A, Koverech G, Lodato F, Caccamo D et al.. Resveratrol protects against homocysteine-induced cell damage via cell stress response in neuroblastoma cells. J Neurosci Res. 2015; 93(1):149-56.
  文献评价指标  
  下载次数:0次 浏览次数:15次