Diagnostic Pathology | |
Magnetic resonance image tissue classification using an automatic method | |
Alireza Karimian1  Amirhosein Riazi2  Rubiyah Yusof3  Sepideh Yazdani3  | |
[1] Department of Biomedical Engineering, Faculty of Engineering, University of Isfahan, Isfahan, Iran;Control and Intelligent Processing Center of Excellence School of Electrical and Computer Engineering, University College of Engineering, University of Tehran, Tehran, Iran;Malaysia-Japan International Institute of Technology (MJIIT), Universiti Teknologi Malaysia, Jalan semarak, Kuala Lumpur 54100, Malaysia | |
关键词: Brain tissue classification; SVMs; Histogram-based segmentation method; Image segmentation; Magnetic resonance imaging; Statistical segmentation; | |
Others : 1175189 DOI : 10.1186/s13000-014-0207-7 |
|
received in 2014-08-22, accepted in 2014-10-08, 发布年份 2014 | |
【 摘 要 】
Background
Brain segmentation in magnetic resonance images (MRI) is an important stage in clinical studies for different issues such as diagnosis, analysis, 3-D visualizations for treatment and surgical planning. MR Image segmentation remains a challenging problem in spite of different existing artifacts such as noise, bias field, partial volume effects and complexity of the images. Some of the automatic brain segmentation techniques are complex and some of them are not sufficiently accurate for certain applications. The goal of this paper is proposing an algorithm that is more accurate and less complex).
Methods
In this paper we present a simple and more accurate automated technique for brain segmentation into White Matter, Gray Matter and Cerebrospinal fluid (CSF) in three-dimensional MR images. The algorithm’s three steps are histogram based segmentation, feature extraction and final classification using SVM. The integrated algorithm has more accurate results than what can be obtained with its individual components. To produce much more efficient segmentation method our framework captures different types of features in each step that are of special importance for MRI, i.e., distributions of tissue intensities, textural features, and relationship with neighboring voxels or spatial features.
Results
Our method has been validated on real images and simulated data, with desirable performance in the presence of noise and intensity inhomogeneities.
Conclusions
The experimental results demonstrate that our proposed method is a simple and accurate technique to define brain tissues with high reproducibility in comparison with other techniques.
Virtual Slides
The virtual slide(s) for this article can be found here: http://www.diagnosticpathology.diagnomx.eu/vs/13000_2014_207 webcite
【 授权许可】
2014 Yazdani et al.; licensee BioMed Central.
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
20150427032541608.pdf | 2267KB | download | |
Figure 12. | 48KB | Image | download |
Figure 11. | 31KB | Image | download |
Figure 10. | 55KB | Image | download |
Figure 9. | 27KB | Image | download |
Figure 8. | 22KB | Image | download |
Figure 7. | 37KB | Image | download |
Figure 6. | 29KB | Image | download |
Figure 5. | 16KB | Image | download |
Figure 4. | 19KB | Image | download |
Figure 3. | 45KB | Image | download |
Figure 2. | 16KB | Image | download |
Figure 1. | 50KB | Image | download |
【 图 表 】
Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
Figure 7.
Figure 8.
Figure 9.
Figure 10.
Figure 11.
Figure 12.
【 参考文献 】
- [1]Karimian A, Yazdani S, Askari M: Reducing the absorbed dose in analogue radiography of infant chest images by improving the image quality, using image processing techniques. Radiat Prot Dosimetry 2011, 147(1–2):176-179.
- [2]Hellebust TP, Tanderup K, Lervåg C, Fidarova E, Berger D, Malinen E, Pötter R, Petrič P: Dosimetric impact of interobserver variability in MRI-based delineation for cervical cancer brachytherapy. Radiother Oncol 2013, 107:13-19.
- [3]Tang J, Liao Y, Zhou B, Tan C, Liu W, Wang D, Liu T, Hao W, Tan L, Chen X: Decrease in temporal gyrus gray matter volume in first-episode, early onset schizophrenia: an MRI study. Plos One 2012, 7(7):e40247.
- [4]Lee J-D, Su H-R, Cheng PE, Liou M, Aston J, Tsai AC, Chen C-Y: MR image segmentation using a power transformation approach. IEEE Trans Med Imaging 2009, 28(6):894-905.
- [5]Zhang N, Ruan S, Lebonvallet S, Liao Q, Zhu Y: Kernel feature selection to fuse multi-spectral MRI images for brain tumor segmentation. Comput Vis Image Underst 2011, 115(2):256-269.
- [6]Weygandt M, Hackmack K, Pfüller C, Bellmann–Strobl J, Paul F, Zipp F, Haynes JD: MRI pattern recognition in multiple sclerosis normal-appearing brain areas. Plos One 2011, 6(6):e21138.
- [7]Jubault T, Brambati SM, Degroot C, Kullmann B, Strafella AP, Lafontaine A-L, Chouinard S, Monchi O: Regional brain stem atrophy in idiopathic Parkinson's disease detected by anatomical MRI. Plos One 2009, 4(12):e8247.
- [8]Farzan A, Mashohor S, Ramli R, Mahmud R: Discriminant analysis of intermediate brain atrophy rates in longitudinal diagnosis of alzheimer's disease. Diagn Pathol 2011, 6(1):1-9. BioMed Central Full Text
- [9]Marroquín JL, Vemuri BC, Botello S, Calderon E, Fernandez-Bouzas A: An accurate and efficient Bayesian method for automatic segmentation of brain MRI. IEEE Trans Med Imaging 2002, 21(8):934-945.
- [10]Clarke L, Velthuizen R, Camacho M, Heine J, Vaidyanathan M, Hall L, Thatcher R, Silbiger M: MRI segmentation: methods and applications. Magn Reson Imaging 1995, 13(3):343-368.
- [11]Wells WM III, Grimson WEL, Kikinis R, Jolesz FA: Adaptive segmentation of MRI data. IEEE Trans Med Imaging 1996, 15(4):429-442.
- [12]Balafar M: Spatial based expectation maximizing (EM). Diagn Pathol 2011, 6:103. BioMed Central Full Text
- [13]Fu J, Chen C, Chai J, Wong ST, Li I: Image segmentation by EM-based adaptive pulse coupled neural networks in brain magnetic resonance imaging. Comput Med Imaging Graph 2010, 34(4):308-320.
- [14]Wang Z, Song Q, Soh YC, Sim K: An adaptive spatial information-theoretic fuzzy clustering algorithm for image segmentation. Comput Vis Image Underst 2013, 117(10):1412-1420.
- [15]Balafar MA: Fuzzy C-mean based brain MRI segmentation algorithms. Artif Intell Rev 2014, 41(3):441-449.
- [16]Yang X, Fei B: A multiscale and multiblock fuzzy C-means classification method for brain MR images. Med Phys 2011, 38:2879.
- [17]Shen S, Sandham W, Granat M, Sterr A: MRI fuzzy segmentation of brain tissue using neighborhood attraction with neural-network optimization. IEEE Trans Inf Technol Biomed 2005, 9(3):459-467.
- [18]Chapelle O, Haffner P, Vapnik VN: Support vector machines for histogram-based image classification. IEEE Trans Neural Netw 1999, 10(5):1055-1064.
- [19]Wu T, Bae MH, Zhang M, Pan R, Badea A: A prior feature SVM-MRF based method for mouse brain segmentation. Neuroimage 2012, 59(3):2298-2306.
- [20]Caldairou B, Passat N, Habas PA, Studholme C, Rousseau F: A non-local fuzzy segmentation method: application to brain MRI. Pattern Recogn 2011, 44(9):1916-1927.
- [21]Ortiz A, Palacio AA, Górriz JM, Ramírez J, Salas-González D: Segmentation of brain MRI using SOM-FCM-based method and 3D statistical descriptors. Comput Math Methods Med 2013, 2013:12.
- [22]Zhang Y, Brady M, Smith S: Segmentation of brain MR images through a hidden Markov random field model and the expectation-maximization algorithm. IEEE Trans Med Imaging 2001, 20(1):45-57.
- [23]Ji Z-X, Sun Q-S, Xia D-S: A framework with modified fast FCM for brain MR images segmentation. Pattern Recogn 2011, 44(5):999-1013.
- [24]Ferreira A, Gentil F, Tavares JMR: Segmentation algorithms for ear image data towards biomechanical studies. Comput Methods Biomech Biomed Engin 2012, 17:1-17. ahead-of-print
- [25]Luo J, Zhu Y, Clarysse P, Magnin I: Correction of bias field in MR images using singularity function analysis. IEEE Trans Med Imaging 2005, 24(8):1067-1085.
- [26]Sled JG, Zijdenbos AP, Evans AC: A nonparametric method for automatic correction of intensity nonuniformity in MRI data. IEEE Trans Med Imaging 1998, 17(1):87-97.
- [27]Shan ZY, Yue GH, Liu JZ: Automated histogram-based brain segmentation in T1-weighted three-dimensional magnetic resonance head images. Neuroimage 2002, 17(3):1587-1598.
- [28]Galdames FJ, Jaillet F, Perez CA: An accurate skull stripping method based on simplex meshes and histogram analysis for magnetic resonance images. J Neurosci Methods 2012, 206(2):103-119.
- [29]Tanoori B, Azimifar Z, Shakibafar A, Katebi S: Brain volumetry: an active contour model-based segmentation followed by SVM-based classification. Comput Biol Med 2011, 41(8):619-632.
- [30]Linder N, Konsti J, Turkki R, Rahtu E, Lundin M, Nordling S, Haglund C, Ahonen T, Pietikäinen M, Lundin J: Identification of tumor epithelium and stroma in tissue microarrays using texture analysis. Diagn Pathol 2012, 7:22. BioMed Central Full Text
- [31]Collins DL, Zijdenbos AP, Kollokian V, Sled JG, Kabani NJ, Holmes CJ, Evans AC: Design and construction of a realistic digital brain phantom. IEEE Trans Med Imaging 1998, 17(3):463-468.
- [32]BrainWeb: Simulated Brain Database. http://www.bic.mni.mcgill.ca/brainweb/
- [33]Shattuck DW, Sandor-Leahy SR, Schaper KA, Rottenberg DA, Leahy RM: Magnetic resonance image tissue classification using a partial volume model. Neuroimage 2001, 13(5):856-876.
- [34]Dice LR: Measures of the amount of ecologic association between species. Ecology 1945, 26(3):297-302.
- [35]Valverde S, Oliver A, Cabezas M, Roura E, Lladó X: Comparison of 10 brain tissue segmentation methods using revisited IBSR annotations.J Magn Reson Imaging 2014, Epub ahead of print.
- [36]Van Leemput K, Maes F, Vandermeulen D, Suetens P: Automated model-based bias field correction of MR images of the brain. IEEE Trans Med Imaging 1999, 18(10):885-896.
- [37]Bricq S, Collet C, Armspach J-P: Unifying framework for multimodal brain MRI segmentation based on Hidden Markov Chains. Med Image Anal 2008, 12(6):639-652.
- [38]Ghasemi J, Ghaderi R, Karami Mollaei M, Hojjatoleslami S: A novel fuzzy Dempster–Shafer inference system for brain MRI segmentation. Inform Sci 2013, 223:205-220.
- [39]Pham DL, Prince JL: Adaptive fuzzy segmentation of magnetic resonance images. IEEE Trans Med Imaging 1999, 18(9):737-752.
- [40]Pham DL: Spatial models for fuzzy clustering. Comput Vis Image Underst 2001, 84(2):285-297.
- [41]Porras Péres AR: Accurate segmentation of brain MR images. Master of Science Thesis in Biomedical Engineering; 2010. http://publications.lib.chalmers.se/records/fulltext/125983.pdf.