期刊论文详细信息
Journal of Translational Medicine
Antibodies against insulin measured by electrochemiluminescence predicts insulitis severity and disease onset in non-obese diabetic mice and can distinguish human type 1 diabetes status
Michael J Lenardo1  John A Todd4  Reid von Borstel2  Jill White3  Carrie L Lucas1  Helen E Stevens4  Lucy J Davison4  Ping Jiang1  Conor A Callahan1  Douglas R Mathern1  Luba Rakhlin1  Lawrence F Jerome3  Kimberly A Shafer-Weaver1  Austin DE Swafford4  Bernice Lo1 
[1] Laboratory of Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA;Wellstat Therapeutics Corporation, 930 Clopper Rd, Gaithersburg, MD 20878, USA;Wellstat Diagnostics, LLC, 930 Clopper Rd, Gaithersburg, MD 20878, USA;Juvenile Diabetes Research Foundation/Wellcome Trust Diabetes and Inflammation Laboratory, Department of Medical Genetics, Cambridge Institute for Medical Research, NIHR Biomedical Research Centre, University of Cambridge, Addenbrooke's Hospital, Cambridge, CB2 0XY, UK
关键词: ECL;    IA;    IAA;    electrochemiluminescence;    insulin;    human autoantibodies;    diabetes;    NOD mice;   
Others  :  1207815
DOI  :  10.1186/1479-5876-9-203
 received in 2011-11-23, accepted in 2011-11-28,  发布年份 2011
PDF
【 摘 要 】

Background

The detection of insulin autoantibodies (IAA) aids in the prediction of autoimmune diabetes development. However, the long-standing, gold standard 125I-insulin radiobinding assay (RBA) has low reproducibility between laboratories, long sample processing times and requires the use of newly synthesized radiolabeled insulin for each set of assays. Therefore, a rapid, non-radioactive, and reproducible assay is highly desirable.

Methods

We have developed electrochemiluminescence (ECL)-based assays that fulfill these criteria in the measurement of IAA and anti-insulin antibodies (IA) in non-obese diabetic (NOD) mice and in type 1 diabetic individuals, respectively. Using the murine IAA ECL assay, we examined the correlation between IAA, histopathological insulitis, and blood glucose in a cohort of female NOD mice from 4 up to 36 weeks of age. We developed a human IA ECL assay that we compared to conventional RBA and validated using samples from 34 diabetic and 59 non-diabetic individuals in three independent laboratories.

Results

Our ECL assays were rapid and sensitive with a broad dynamic range and low background. In the NOD mouse model, IAA levels measured by ECL were positively correlated with insulitis severity, and the values measured at 8-10 weeks of age were predictive of diabetes onset. Using human serum and plasma samples, our IA ECL assay yielded reproducible and accurate results with an average sensitivity of 84% at 95% specificity with no statistically significant difference between laboratories.

Conclusions

These novel, non-radioactive ECL-based assays should facilitate reliable and fast detection of antibodies to insulin and its precursors sera and plasma in a standardized manner between laboratories in both research and clinical settings. Our next step is to evaluate the human IA assay in the detection of IAA in prediabetic subjects or those at risk of type 1 diabetes and to develop similar assays for other autoantibodies that together are predictive for the diagnosis of this common disorder, in order to improve prediction and facilitate future therapeutic trials.

【 授权许可】

   
2011 Lo et al; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150530111103295.pdf 6121KB PDF download
Figure 10. 36KB Image download
Figure 9. 51KB Image download
Figure 8. 43KB Image download
Figure 7. 14KB Image download
Figure 6. 60KB Image download
Figure 5. 43KB Image download
Figure 4. 85KB Image download
Figure 3. 95KB Image download
Figure 2. 31KB Image download
Figure 1. 41KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

Figure 7.

Figure 8.

Figure 9.

Figure 10.

【 参考文献 】
  • [1]Wucherpfennig KW, Sethi D: T cell receptor recognition of self and foreign antigens in the induction of autoimmunity. Semin Immunol 2011, 23:84-91.
  • [2]Lleo A, Invernizzi P, Gao B, Podda M, Gershwin ME: Definition of human autoimmunity--autoantibodies versus autoimmune disease. Autoimmun Rev 2010, 9:A259-266.
  • [3]Melendez-Ramirez LY, Richards RJ, Cefalu WT: Complications of type 1 diabetes. Endocrinol Metab Clin North Am 2010, 39:625-640.
  • [4]van Belle TL, Coppieters KT, von Herrath MG: Type 1 diabetes: etiology, immunology, and therapeutic strategies. Physiol Rev 2011, 91:79-118.
  • [5]Todd JA: Etiology of type 1 diabetes. Immunity 2010, 32:457-467.
  • [6]Matveyenko AV, Butler PC: Relationship between beta-cell mass and diabetes onset. Diabetes Obes Metab 2008, 10(Suppl 4):23-31.
  • [7]Verge CF, Gianani R, Kawasaki E, Yu L, Pietropaolo M, Jackson RA, Chase HP, Eisenbarth GS: Prediction of type I diabetes in first-degree relatives using a combination of insulin, GAD, and ICA512bdc/IA-2 autoantibodies. Diabetes 1996, 45:926-933.
  • [8]Verge CF, Gianani R, Kawasaki E, Yu L, Pietropaolo M, Chase HP, Eisenbarth GS: Number of autoantibodies (against insulin, GAD or ICA512/IA2) rather than particular autoantibody specificities determines risk of type I diabetes. J Autoimmun 1996, 9:379-383.
  • [9]Siljander HT, Veijola R, Reunanen A, Virtanen SM, Akerblom HK, Knip M: Prediction of type 1 diabetes among siblings of affected children and in the general population. Diabetologia 2007, 50:2272-2275.
  • [10]Korhonen S, Knip MM, Kulmala P, Savola K, Akerblom HK, Knip M: Autoantibodies to GAD, IA-2 and insulin in ICA-positive first-degree relatives of children with type 1 diabetes: a comparison between parents and siblings. Diabetes Metab Res Rev 2002, 18:43-48.
  • [11]Wenzlau JM, Liu Y, Yu L, Moua O, Fowler KT, Rangasamy S, Walters J, Eisenbarth GS, Davidson HW, Hutton JC: A common nonsynonymous single nucleotide polymorphism in the SLC30A8 gene determines ZnT8 autoantibody specificity in type 1 diabetes. Diabetes 2008, 57:2693-2697.
  • [12]Verge CF, Stenger D, Bonifacio E, Colman PG, Pilcher C, Bingley PJ, Eisenbarth GS: Combined use of autoantibodies (IA-2 autoantibody, GAD autoantibody, insulin autoantibody, cytoplasmic islet cell antibodies) in type 1 diabetes: Combinatorial Islet Autoantibody Workshop. Diabetes 1998, 47:1857-1866.
  • [13]Achenbach P, Warncke K, Reiter J, Naserke HE, Williams AJ, Bingley PJ, Bonifacio E, Ziegler AG: Stratification of type 1 diabetes risk on the basis of islet autoantibody characteristics. Diabetes 2004, 53:384-392.
  • [14]Kimpimaki T, Kulmala P, Savola K, Kupila A, Korhonen S, Simell T, Ilonen J, Simell O, Knip M: Natural history of beta-cell autoimmunity in young children with increased genetic susceptibility to type 1 diabetes recruited from the general population. J Clin Endocrinol Metab 2002, 87:4572-4579.
  • [15]Yu L, Robles DT, Abiru N, Kaur P, Rewers M, Kelemen K, Eisenbarth GS: Early expression of antiinsulin autoantibodies of humans and the NOD mouse: evidence for early determination of subsequent diabetes. Proc Natl Acad Sci USA 2000, 97:1701-1706.
  • [16]Colman PG, Steele C, Couper JJ, Beresford SJ, Powell T, Kewming K, Pollard A, Gellert S, Tait B, Honeyman M, Harrison LC: Islet autoimmunity in infants with a Type I diabetic relative is common but is frequently restricted to one autoantibody. Diabetologia 2000, 43:203-209.
  • [17]Mrena S, Virtanen SM, Laippala P, Kulmala P, Hannila ML, Akerblom HK, Knip M: Models for predicting type 1 diabetes in siblings of affected children. Diabetes Care 2006, 29:662-667.
  • [18]Siljander H, Harkonen T, Hermann R, Simell S, Hekkala A, Salonsaari RT, Simell T, Simell O, Ilonen J, Veijola R, Knip M: Role of insulin autoantibody affinity as a predictive marker for type 1 diabetes in young children with HLA-conferred disease susceptibility. Diabetes Metab Res Rev 2009, 25:615-622.
  • [19]Steck AK, Johnson K, Barriga KJ, Miao D, Yu L, Hutton JC, Eisenbarth GS, Rewers MJ: Age of islet autoantibody appearance and mean levels of insulin, but not GAD or IA-2 autoantibodies, predict age of diagnosis of type 1 diabetes: diabetes autoimmunity study in the young. Diabetes Care 2011, 34:1397-1399.
  • [20]Melanitou E, Devendra D, Liu E, Miao D, Eisenbarth GS: Early and quantal (by litter) expression of insulin autoantibodies in the nonobese diabetic mice predict early diabetes onset. J Immunol 2004, 173:6603-6610.
  • [21]Robles DT, Eisenbarth GS, Dailey NJ, Peterson LB, Wicker LS: Insulin autoantibodies are associated with islet inflammation but not always related to diabetes progression in NOD congenic mice. Diabetes 2003, 52:882-886.
  • [22]Thayer TC, Wilson SB, Mathews CE: Use of nonobese diabetic mice to understand human type 1 diabetes. Endocrinol Metab Clin North Am 2010, 39:541-561.
  • [23]Delovitch TL, Singh B: The nonobese diabetic mouse as a model of autoimmune diabetes: immune dysregulation gets the NOD. Immunity 1997, 7:727-738.
  • [24]Anderson MS, Bluestone JA: The NOD mouse: a model of immune dysregulation. Annu Rev Immunol 2005, 23:447-485.
  • [25]Greenbaum CJ, Palmer JP, Kuglin B, Kolb H: Insulin autoantibodies measured by radioimmunoassay methodology are more related to insulin-dependent diabetes mellitus than those measured by enzyme-linked immunosorbent assay: results of the Fourth International Workshop on the Standardization of Insulin Autoantibody Measurement. J Clin Endocrinol Metab 1992, 74:1040-1044.
  • [26]Schlosser M, Mueller PW, Torn C, Bonifacio E, Bingley PJ: Diabetes Antibody Standardization Program: evaluation of assays for insulin autoantibodies. Diabetologia 2010, 53:2611-2620.
  • [27]Bonifacio E, Atkinson M, Eisenbarth G, Serreze D, Kay TW, Lee-Chan E, Singh B: International Workshop on Lessons From Animal Models for Human Type 1 Diabetes: identification of insulin but not glutamic acid decarboxylase or IA-2 as specific autoantigens of humoral autoimmunity in nonobese diabetic mice. Diabetes 2001, 50:2451-2458.
  • [28]Bingley PJ: Clinical applications of diabetes antibody testing. J Clin Endocrinol Metab 2010, 95:25-33.
  • [29]Williams AJ, Curnock R, Reed CR, Easton P, Rokni S, Bingley PJ: Anti-BSA antibodies are a major cause of non-specific binding in insulin autoantibody radiobinding assays. J Immunol Methods 2010, 362:199-203.
  • [30]Williams AJ, Bingley PJ, Bonifacio E, Palmer JP, Gale EA: A novel micro-assay for insulin autoantibodies. J Autoimmun 1997, 10:473-478.
  • [31]Zancheta R, Russo V, Presotto F, Magrin L, Pedini B, Betterle C: Detection of insulin autoantibodies using an ELISA technique in first-degree relatives of IDDM patients and in autoimmune patients. Diabetes Res 1987, 6:189-194.
  • [32]Forster RJ, Bertoncello P, Keyes TE: Electrogenerated chemiluminescence. Annu Rev Anal Chem (Palo Alto Calif) 2009, 2:359-385.
  • [33]Bertoncello P, Forster RJ: Nanostructured materials for electrochemiluminescence (ECL)-based detection methods: recent advances and future perspectives. Biosens Bioelectron 2009, 24:3191-3200.
  • [34]Blackburn GF, Shah HP, Kenten JH, Leland J, Kamin RA, Link J, Peterman J, Powell MJ, Shah A, Talley DB, et al.: Electrochemiluminescence detection for development of immunoassays and DNA probe assays for clinical diagnostics. Clin Chem 1991, 37:1534-1539.
  • [35]Lewczuk P, Kamrowski-Kruck H, Peters O, Heuser I, Jessen F, Popp J, Burger K, Hampel H, Frolich L, Wolf S, et al.: Soluble amyloid precursor proteins in the cerebrospinal fluid as novel potential biomarkers of Alzheimer's disease: a multicenter study. Mol Psychiatry 2010, 15:138-145.
  • [36]Jesse S, Steinacker P, Lehnert S, Sdzuj M, Cepek L, Tumani H, Jahn O, Schmidt H, Otto M: A proteomic approach for the diagnosis of bacterial meningitis. PLoS One 2010, 5:e10079.
  • [37]Gisslen M, Krut J, Andreasson U, Blennow K, Cinque P, Brew BJ, Spudich S, Hagberg L, Rosengren L, Price RW, Zetterberg H: Amyloid and tau cerebrospinal fluid biomarkers in HIV infection. BMC Neurol 2009, 9:63. BioMed Central Full Text
  • [38]Guglielmo-Viret V, Attree O, Blanco-Gros V, Thullier P: Comparison of electrochemiluminescence assay and ELISA for the detection of Clostridium botulinum type B neurotoxin. J Immunol Methods 2005, 301:164-172.
  • [39]Guglielmo-Viret V, Thullier P: Comparison of an electrochemiluminescence assay in plate format over a colorimetric ELISA, for the detection of ricin B chain (RCA-B). J Immunol Methods 2007, 328:70-78.
  • [40]McInerney MF, Pek SB, Thomas DW: Prevention of insulitis and diabetes onset by treatment with complete Freund's adjuvant in NOD mice. Diabetes 1991, 40:715-725.
  • [41]Leiter EH: The NOD mouse: a model for insulin-dependent diabetes mellitus. Curr Protoc Immunol 2001, Chapter 15(Unit 15):19.
  • [42]Hanley JA, McNeil BJ: A method of comparing the areas under receiver operating characteristic curves derived from the same cases. Radiology 1983, 148:839-843.
  • [43]Deaver DR: A new non-isotopic detection system for immunoassays. Nature 1995, 377:758-760.
  • [44]Kimpimaki T, Kupila A, Hamalainen AM, Kukko M, Kulmala P, Savola K, Simell T, Keskinen P, Ilonen J, Simell O, Knip M: The first signs of beta-cell autoimmunity appear in infancy in genetically susceptible children from the general population: the Finnish Type 1 Diabetes Prediction and Prevention Study. J Clin Endocrinol Metab 2001, 86:4782-4788.
  • [45]Polychronakos C, Li Q: Understanding type 1 diabetes through genetics: advances and prospects. Nat Rev Genet 2011, 12:781-792.
  • [46]Nakayama M, Abiru N, Moriyama H, Babaya N, Liu E, Miao D, Yu L, Wegmann DR, Hutton JC, Elliott JF, Eisenbarth GS: Prime role for an insulin epitope in the development of type 1 diabetes in NOD mice. Nature 2005, 435:220-223.
  • [47]Butler JE: Solid supports in enzyme-linked immunosorbent assay and other solid-phase immunoassays. Methods 2000, 22:4-23.
  • [48]Ohsugi T, Kurosawa T: Increased incidence of diabetes mellitus in specific pathogen-eliminated offspring produced by embryo transfer in NOD mice with low incidence of the disease. Lab Anim Sci 1994, 44:386-388.
  • [49]Baxter AG, Koulmanda M, Mandel TE: High and low diabetes incidence nonobese diabetic (NOD) mice: origins and characterisation. Autoimmunity 1991, 9:61-67.
  • [50]Palmer JP, Asplin CM, Clemons P, Lyen K, Tatpati O, Raghu PK, Paquette TL: Insulin antibodies in insulin-dependent diabetics before insulin treatment. Science 1983, 222:1337-1339.
  • [51]Thomas JW, Virta VJ, Nell LJ: Heterogeneity and specificity of human anti-insulin antibodies determined by isoelectric focusing. J Immunol 1985, 134:1048-1052.
  • [52]Thomas JW, Beckwith M, Nell LJ: Spectrotypic analysis of antibodies to insulin A and B chains. Mol Immunol 1988, 25:173-179.
  • [53]Nell LJ, Hulbert C, Thomas JW: Human insulin autoantibody fine specificity and H and L chain use. J Immunol 1989, 142:3063-3069.
  • [54]Greenbaum CJ, Palmer JP: Insulin antibodies and insulin autoantibodies. Diabet Med 1991, 8:97-105.
  • [55]Wenzlau JM, Juhl K, Yu L, Moua O, Sarkar SA, Gottlieb P, Rewers M, Eisenbarth GS, Jensen J, Davidson HW, Hutton JC: The cation efflux transporter ZnT8 (Slc30A8) is a major autoantigen in human type 1 diabetes. Proc Natl Acad Sci USA 2007, 104:17040-17045.
  • [56]LaGasse JM, Brantley MS, Leech NJ, Rowe RE, Monks S, Palmer JP, Nepom GT, McCulloch DK, Hagopian WA: Successful prospective prediction of type 1 diabetes in schoolchildren through multiple defined autoantibodies: an 8-year follow-up of the Washington State Diabetes Prediction Study. Diabetes Care 2002, 25:505-511.
  文献评价指标  
  下载次数:40次 浏览次数:12次