期刊论文详细信息
Journal of Neuroinflammation
Pro-inflammatory interleukin-18 increases Alzheimer’s disease-associated amyloid-β production in human neuron-like cells
Johanna O Ojala3  Antero Salminen1  George Anderson2  Elina M Sutinen3 
[1] Kuopio University Hospital, Neurology, P.O.B. 1777, FI-70211, Kuopio, Finland;CRC, Rm30, 57 Laurel Street, Glasgow, Scotland, UK;University of Eastern Finland, Clinical Research Centre/ Brain Research Unit, Mediteknia, P.O.B. 1627, FI-70211, Kuopio, Finland
关键词: Presenilin;    BACE;    Alzheimer’s disease;    Amyloid-beta;    Inflammation;    Interleukin-18;   
Others  :  1160293
DOI  :  10.1186/1742-2094-9-199
 received in 2012-03-09, accepted in 2012-07-28,  发布年份 2012
PDF
【 摘 要 】

Background

Alzheimer’s disease (AD) involves increased accumulation of amyloid-β (Aβ) plaques and neurofibrillary tangles as well as neuronal loss in various regions of the neocortex. Neuroinflammation is also present, but its role in AD is not fully understood. We previously showed increased levels of pro-inflammatory cytokine interleukin-18 (IL-18) in different regions of AD brains, where it co-localized with Aβ-plaques, as well as the ability of IL-18 to increase expression of glycogen synthase kinase-3β (GSK-3β) and cyclin dependent kinase 5, involved in hyperphosphorylation of tau-protein. Elevated IL-18 has been detected in several risk conditions for AD, including obesity, type-II diabetes, and cardiovascular diseases as well as in stress.

Methods

We differentiated SH-SY5Y neuroblastoma cells as neuron-like and exposed them to IL-18 for various times. We examined the protein levels of amyloid-β precursor protein (APP) and its processing products, its cleaving enzymes, involved in amyloidogenic processing of APP, and markers of apoptosis.

Results

IL-18 increased protein levels of the β-site APP-cleaving enzyme BACE-1, the N-terminal fragment of presenilin-1 and slightly presenilin enhancer 2, both of which are members of the γ-secretase complex, as well as Fe65, which is a binding protein of the C-terminus of APP and one regulator for GSK-3β. IL-18 also increased APP expression and phosphorylation, which preceded increased BACE-1 levels. Further, IL-18 altered APP processing, increasing Aβ40 production in particular, which was inhibited by IL-18 binding protein. Increased levels of soluble APPβ were detected in culture medium after the IL-18 exposure. IL-18 also increased anti-apoptotic bcl-xL levels, which likely counteracted the minor increase of the pro-apoptotic caspase-3. Lactate dehydrogenase activity in culture medium was unaffected.

Conclusions

The IL-18 induction of BACE-1, APP processing, and Aβ is likely to be linked to stress-associated adaptations in neurons during the course of normal functioning and development. However, in the course of wider changes in the aging brain, and particularly in AD, the effects of heightened or prolonged levels of IL-18 may contribute to the process of AD, including via increased Aβ.

【 授权许可】

   
2012 Sutinen et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150410101319257.pdf 3182KB PDF download
Figure 6. 114KB Image download
Figure 5. 71KB Image download
Figure 4. 55KB Image download
Figure 3. 84KB Image download
Figure 2. 59KB Image download
Figure 1. 40KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

【 参考文献 】
  • [1]Carpentier M, Robitaille Y, DesGroseillers L, Boileau G, Marcinkiewicz M: Declining expression of neprilysin in Alzheimer disease vasculature: possible involvement in cerebral amyloid angiopathy. J Neuropathol Exp Neurol 2002, 61:849-856. OvidSP_UI03.05.01.104, SourceID 55663
  • [2]Mattson MP, Rydel RE: Amyloid ox-tox transducers. Nature 1996, 382:674-675.
  • [3]Olney JW, Wozniak DF, Farber NB: Excitotoxic neurodegeneration in Alzheimer disease. New hypothesis and new therapeutic strategies. Arch Neurol 1997, 54:1234-1240.
  • [4]Heneka MT, O’Banion MK: Inflammatory processes in Alzheimer’s disease. J Neuroimmunol 2007, 184:69-91.
  • [5]Wyss-Coray T: Inflammation in Alzheimer disease: driving force, bystander or beneficial response? Nat Med 2006, 12:1005-1015.
  • [6]Wyss-Coray T, Rogers J: Inflammation in Alzheimer disease-a brief review of the basic science and clinical literature. Cold Spring Harb Perspect Med 2012, 2:1-23.
  • [7]Bauer J, Strauss S, Schreiter-Gasser U, Ganter U, Schlegel P, Witt I, Yolk B, Berger M: Interleukin-6 and alpha-2-macroglobulin indicate an acute-phase state in Alzheimer’s disease cortices. FEBS Lett 1991, 285:111-114.
  • [8]Vandenabeele P, Fiers W: Is amyloidogenesis during Alzheimer’s disease due to an IL-1-/IL-6-mediated ‘acute phase response’ in the brain? Immunol Today 1991, 12:217-219.
  • [9]Cacabelos R, Alvarez XA, Fernandez-Novoa L, Franco A, Mangues R, Pellicer A, Nishimura T: Brain interleukin-1 beta in Alzheimer’s disease and vascular dementia. Methods Find Exp Clin Pharmacol 1994, 16:141-151.
  • [10]Griffin WS, Sheng JG, Royston MC, Gentleman SM, McKenzie JE, Graham DI, Roberts GW, Mrak RE: Glial-neuronal interactions in Alzheimer’s disease: the potential role of a ‘cytokine cycle’ in disease progression. Brain Pathol 1998, 8:65-72.
  • [11]Chang KA, Kim SH, Sakaki Y, Kim HS, Park CW, Suh YH: Inhibition of the NGF and IL-1beta-induced expression of Alzheimer’s amyloid precursor protein by antisense oligonucleotides. J Mol Neurosci 1999, 12:69-74.
  • [12]Ojala J, Alafuzoff I, Herukka SK, van Groen T, Tanila H, Pirttilä T: Expression of interleukin-18 is increased in the brains of Alzheimer’s disease patients. Neurobiol Aging 2009, 30:198-209.
  • [13]Okamura H, Tsutsui H, Komatsu T, Yutsudo M, Hakura A, Tanimoto T, Torigoe K, Okura T, Nukada Y, Hattori K, Akita K, Namba M, Tanabe F, Konishi K, Fukuda S, Kurimoto M: Cloning of a new cytokine that induces IFN-gamma production by T cells. Nature 1995, 378:88-91.
  • [14]Joosten LA, Radstake TR, Lubberts E, van den Bersselaar LA, van Riel PL, van Lent PL, Barrera P, van den Berg WB: Association of interleukin-18 expression with enhanced levels of both interleukin-1beta and tumor necrosis factor alpha in knee synovial tissue of patients with rheumatoid arthritis. Arthritis Rheum 2003, 48:339-347.
  • [15]Fantuzzi G, Reed DA, Qi M, Scully S, Dinarello CA, Senaldi G: Role of interferon regulatory factor-1 in the regulation of IL-18 production and activity. Eur J Immunol 2001, 31:369-375.
  • [16]Kim Y-M, Im JY, Han SH, Kang HS, Choi I: IFN-γ up-regulates IL-18 gene expression via IFN consensus sequence-binding protein and activator protein-1 elements in macrophages. J Immunol 2000, 165:3198-3205.
  • [17]Conti B, Park LC, Calingasan NY, Kim Y, Kim H, Bae Y, Gibson GE, Joh TH: Cultures of astrocytes and microglia express interleukin 18. Brain Res Mol Brain Res 1999, 67:46-52.
  • [18]Sugama S, Cho BP, Baker H, Joh TH, Lucero J, Conti B: Neurons of the superior nucleus of the medial habenula and ependymal cells express IL-18 in rat CNS. Brain Res 2002, 958:1-9.
  • [19]Ojala JO, Sutinen EM, Salminen A, Pirttilä T: Interleukin-18 increases expression of kinases involved in tau phosphorylation in SH-SY5Y neuroblastoma cells. J Neuroimmunol 2008, 205:86-93.
  • [20]Blacker D, Bertram L, Saunders AJ, Moscarillo TJ, Albert MS, Wiener H, Perry RT, Collins JS, Harrell LE, Go RC, Mahoney A, Beaty T, Fallin MD, Avramopoulos D, Chase GA, Folstein MF, McInnis MG, Bassett SS, Doheny KJ, Pugh EW, Tanzi RE, NIMH Genetics Initiative Alzheimer’s Disease Study Group: Results of a high-resolution genome screen of 437 Alzheimer’s disease families. Hum Mol Genet 2003, 12:23-32.
  • [21]Nolan KF, Greaves DR, Waldmann H: The human interleukin 18 gene IL18 maps to 11q22.2-q22.3, closely linked to the DRD2 gene locus and distinct from mapped IDDM loci. Genomics 1998, 51:161-163.
  • [22]Bossù P, Ciaramella A, Moro ML, Bellincampi L, Bernardini S, Federici G, Trequattrini A, Macciardi F, Spoletini I, Di Iulio F, Caltagirone C, Spalletta G: Interleukin 18 gene polymorphisms predict risk and outcome of Alzheimer’s disease. J Neurol Neurosurg Psychiatry 2007, 78:807-811.
  • [23]Yu JT, Tan L, Song JH, Sun YP, Chen W, Miao D, Tian Y: Interleukin-18 promoter polymorphisms and risk of late onset Alzheimer’s disease. Brain Res 2009, 1253:169-175.
  • [24]Kalina U, Ballas K, Koyama N, Kauschat D, Miething C, Arnemann J, Martin H, Hoelzer D, Ottmann OG: Genomic organization and regulation of the human interleukin-18 gene. Scand J Immunol 2000, 52:525-530.
  • [25]Giedraitis V, He B, Huang WX, Hillert J: Cloning and mutation analysis of the human IL-18 promoter: a possible role of polymorphisms in expression regulation. J Neuroimmunol 2001, 112:146-152.
  • [26]Segat L, Milanese M, Arosio B, Vergani C, Crovella S: Lack of association between Interleukin-18 gene promoter polymorphisms and onset of Alzheimer’s disease. Neurobiol Aging 2010, 31:162-164.
  • [27]Bossù P, Ciaramella A, Salani F, Bizzoni F, Varsi E, Di Iulio F, Giubilei F, Gianni W, Trequattrini A, Moro ML, Bernardini S, Caltagirone C, Spalletta G: Interleukin-18 produced by peripheral blood cells is increased in Alzheimer’s disease and correlates with cognitive impairment. Brain Behav Immun 2008, 22:487-492.
  • [28]Malaguarnera L, Motta M, Di Rosa M, Anzaldi M, Malaguarnera M: Interleukin-18 and transforming growth factor-beta 1 plasma levels in Alzheimer’s disease and vascular dementia. Neuropathology 2006, 26:307-312.
  • [29]Ciaramella A, Sanarico N, Bizzoni F, Moro ML, Salani F, Scapigliati G, Spalletta G, Caltagirone C, Bossù P: Amyloid beta peptide promotes differentiation of pro-inflammatory human myeloid dendritic cells. Neurobiol Aging 2009, 30:210-221.
  • [30]Suk K, Yeou Kim S, Kim H: Regulation of IL-18 production by IFN gamma and PGE2 in mouse microglial cells: involvement of NF-kB pathway in the regulatory processes. Immunol Lett 2001, 77:79-85.
  • [31]Chandrasekar B, Valente AJ, Freeman GL, Mahimainathan L, Mummidi S: Interleukin-18 induces human cardiac endothelial cell death via a novel signaling pathway involving NF-kappaB-dependent PTEN activation. Biochem Biophys Res Commun 2006, 339:956-963.
  • [32]Kanno T, Nagata T, Yamamoto S, Okamura H, Nishizaki T: Interleukin-18 stimulates synaptically released glutamate and enhances postsynaptic AMPA receptor responses in the CA1 region of mouse hippocampal slices. Brain Res 2004, 1012:190-193.
  • [33]Pickering M, O’Connor JJ: Pro-inflammatory cytokines and their effects in the dentate gyrus. Prog Brain Res 2007, 163:339-354.
  • [34]Mallat Z, Corbaz A, Scoazec A, Besnard S, Lesèche G, Chvatchko Y, Tedgui A: Expression of interleukin-18 in human atherosclerotic plaques and relation to plaque instability. Circulation 2001, 104:1598-1603.
  • [35]Aso Y, Okumura K, Takebayashi K, Wakabayashi S, Inukai T: Relationships of plasma interleukin-18 concentrations to hyperhomocysteinemia and carotid intimal-media wall thickness in patients with type 2 diabetes. Diabetes Care 2003, 26:2622-2627.
  • [36]Hayden KM, Zandi PP, Lyketsos CG, Khachaturian AS, Bastian LA, Charoonruk G, Tschanz JT, Norton MC, Pieper CF, Munger RG, Breitner JC, Welsh-Bohmer KA: Cache County Investigators: Vascular risk factors for incident Alzheimer disease and vascular dementia: the Cache County study. Alzheimer Dis Assoc Disord 2006, 20:93-100.
  • [37]Qiu C, De Ronchi D, Fratiglioni L: The epidemiology of the dementias: an update. Curr Opin Psychiatry 2007, 20:380-385.
  • [38]Sugama S, Conti B: Interleukin-18 and stress. Brain Res Rev 2008, 58:85-95.
  • [39]Yaguchi T, Nagata T, Yang D, Nishizaki T: Interleukin-18 regulates motor activity, anxiety and spatial learning without affecting synaptic plasticity. Behav Brain Res 2010, 206:47-51.
  • [40]Kristo C, Godang K, Ueland T, Lien E, Aukrust P, Froland SS, Bollerslev J: Raised serum levels of interleukin-8 and interleukin-18 in relation to bone metabolism in endogenous Cushing’s syndrome. Eur J Endocrinol 2002, 146:389-395.
  • [41]Gardella S, Andrei C, Poggi A, Zocchi MR, Rubartelli A: Control of interleukin-18 secretion by dendritic cells: role of calcium influxes. FEBS Lett 2000, 481:245-248.
  • [42]Sisodia SS, Koo EH, Beyreuther K, Unterbeck A, Price DL: Evidence that beta-amyloid protein in Alzheimer’s disease is not derived by normal processing. Science 1990, 248:492-495.
  • [43]Ando K, Oishi M, Takeda S, Iijima K, Isohara T, Nairn AC, Kirino Y, Greengard P, Suzuki T: Role of phosphorylation of Alzheimer’s amyloid precursor protein during neuronal differentiation. J Neurosci 1999, 19:4421-4427.
  • [44]Fisher S, Gearhart JD, Oster-Granite ML: Expression of the amyloid precursor protein gene in mouse oocytes and embryos. Proc Natl Acad Sci USA 1991, 88:1779-1782.
  • [45]López-Sánchez N, Müller U, Frade JM: Lengthening of G2/mitosis in cortical precursors from mice lacking beta-amyloid precursor protein. Neuroscience 2005, 130:51-60.
  • [46]Pinnix I, Musunuru U, Tun H, Sridharan A, Golde T, Eckman C, Ziani-Cherif C, Onstead L, Sambamurti K: A novel gamma -secretase assay based on detection of the putative C-terminal fragment-gamma of amyloid beta protein precursor. J Biol Chem 2001, 276:481-487.
  • [47]Vassar R, Bennett BD, Babu-Khan S, Kahn S, Mendiaz EA, Denis P, Teplow DB, Ross S, Amarante P, Loeloff R, Luo Y, Fisher S, Fuller J, Edenson S, Lile J, Jarosinski MA, Biere AL, Curran E, Burgess T, Louis JC, Collins F, Treanor J, Rogers G, Citron M: Beta-secretase cleavage of Alzheimer’s amyloid precursor protein by the transmembrane aspartic protease BACE. Science 1999, 286:735-741.
  • [48]Huse JT, Pijak DS, Leslie GJ, Lee VM, Doms RW: Maturation and endosomal targeting of beta-site amyloid precursor protein-cleaving enzyme. The Alzheimer’s disease beta-secretase. J Biol Chem 2000, 275:33729-33737.
  • [49]Baulac S, LaVoie MJ, Kimberly WT, Strahle J, Wolfe MS, Selkoe DJ, Xia W: Functional gamma-secretase complex assembly in Golgi/trans-Golgi network: interactions among presenilin, nicastrin, Aph1, Pen-2, and gamma-secretase substrates. Neurobiol Dis 2003, 14:194-204.
  • [50]Allinson TM, Parkin ET, Turner AJ, Hooper NM: ADAMs family members as amyloid precursor protein alpha-secretases. J Neurosci Res 2003, 74:342-352.
  • [51]Nikolaev A, McLaughlin T, O’Leary DD, Tessier-Lavigne M: APP binds DR6 to trigger axon pruning and neuron death via distinct caspases. Nature 2009, 457:981-989.
  • [52]Gervais FG, Xu D, Robertson GS, Vaillancourt JP, Zhu Y, Huang J, LeBlanc A, Smith D, Rigby M, Shearman MS, Clarke EE, Zheng H, Van Der Ploeg LH, Ruffolo SC, Thornberry NA, Xanthoudakis S, Zamboni RJ, Roy S, Nicholson DW: Involvement of caspases in proteolytic cleavage of Alzheimer’s amyloid-beta precursor protein and amyloidogenic A beta peptide formation. Cell 1999, 97:395-406.
  • [53]Pastorino L, Sun A, Lu PJ, Zhou XZ, Balastik M, Finn G, Wulf G, Lim J, Li SH, Li X, Xia W, Nicholson LK, Lu KP: The prolyl isomerase Pin1 regulates amyloid precursor protein processing and amyloid-beta production. Nature 2006, 440:528-534. Erratum in: Nature 2007, 446:342
  • [54]Lee MS, Kao SC, Lemere CA, Xia W, Tseng HC, Zhou Y, Neve R, Ahlijanian MK, Tsai LH: APP processing is regulated by cytoplasmic phosphorylation. J Cell Biol 2003, 163:83-95.
  • [55]Liu F, Su Y, Li B, Zhou Y, Ryder J, Gonzalez-DeWhitt P, May PC, Ni B: Regulation of amyloid precursor protein (APP) phosphorylation and processing by p35/Cdk5 and p25/Cdk5. FEBS Lett 2003, 547:193-196.
  • [56]Kim HS, Kim EM, Lee JP, Park CH, Kim S, Seo JH, Chang KA, Yu E, Jeong SJ, Chong YH, Suh YH: C-terminal fragments of amyloid precursor protein exert neurotoxicity by inducing glycogen synthase kinase-3beta expression. FASEB J 2003, 17:1951-1953.
  • [57]Kirschenbaum F, Hsu SC, Cordell B, McCarthy JV: Glycogen synthase kinase-3beta regulates presenilin 1 C-terminal fragment levels. J Biol Chem 2001, 276:30701-30707.
  • [58]Maesako M, Uemura K, Kubota M, Hiyoshi K, Ando K, Kuzuya A, Kihara T, Asada M, Akiyama H, Kinoshita A: Effect of glycogen synthase kinase 3 β-mediated presenilin 1 phosphorylation on amyloid β production is negatively regulated by insulin receptor cleavage. Neuroscience 2011, 177:298-307.
  • [59]Sallmon H, Hoene V, Weber SC, Dame C: Differentiation of human SH-SY5Y neuroblastoma cells by all-trans retinoic acid activates the interleukin-18 system. J Interferon Cytokine Res 2010, 30:55-58.
  • [60]Bammens L, Chávez-Gutiérrez L, Tolia A, Zwijsen A, De Strooper B: Functional and topological analysis of Pen-2, the fourth subunit of the gamma-secretase complex. J Biol Chem 2011, 286:12271-12282.
  • [61]Kim SH, Sisodia SS: A sequence within the first transmembrane domain of PEN-2 is critical for PEN-2-mediated endoproteolysis of presenilin 1. J Biol Chem 2005, 280:1992-2001.
  • [62]Kuhn PH, Marjaux E, Imhof A, De Strooper B, Haass C, Lichtenthaler SF: Regulated intramembrane proteolysis of the interleukin-1 receptor II by alpha-, beta-, and gamma-secretase. J Biol Chem 2007, 282:11982-11995.
  • [63]Thomassen E, Bird TA, Renshaw BR, Kennedy MK, Sims JE: Binding of interleukin-18 to the interleukin-1 receptor homologous receptor IL-1Rrp1 leads to activation of signaling pathways similar to those used by interleukin-1. J Interferon Cytokine Res 1998, 18:1077-1088.
  • [64]Alboni S, Cervia D, Sugama S, Conti B: Interleukin 18 in the CNS. J Neuroinflammation 2010, 7:1-12. BioMed Central Full Text
  • [65]Tanaka S, Shiojiri S, Takahashi Y, Kitaguchi N, Ito H, Kameyama M, Kimura J, Nakamura S, Ueda K: Tissue-specific expression of three types of beta-protein precursor mRNA: enhancement of protease inhibitor-harboring types in Alzheimer’s disease brain. Biochem Biophys Res Commun 1989, 165:1406-1414.
  • [66]Herms J, Anliker B, Heber S, Ring S, Fuhrmann M, Kretzschmar H, Sisodia S, Müller U: Cortical dysplasia resembling human type 2 lissencephaly in mice lacking all three APP family members. EMBO J 2004, 23:4106-4115.
  • [67]Young-Pearse TL, Bai J, Chang R, Zheng JB, LoTurco JJ, Selkoe DJ: A critical function for beta-amyloid precursor protein in neuronal migration revealed by in utero RNA interference. J Neurosci 2007, 27:14459-14469.
  • [68]Allinquant B, Hantraye P, Mailleux P, Moya K, Bouillot C, Prochiantz A: Downregulation of amyloid precursor protein inhibits neurite outgrowth in vitro. J Cell Biol 1995, 128:919-927.
  • [69]Ikin AF, Sabo SL, Lanier LM, Buxbaum JD: A macromolecular complex involving the amyloid precursor protein (APP) and the cytosolic adapter FE65 is a negative regulator of axon branching. Mol Cell Neurosci 2007, 35:57-63.
  • [70]Moya KL, Benowitz LI, Schneider GE, Allinquant B: The amyloid precursor protein is developmentally regulated and correlated with synaptogenesis. Dev Biol 1994, 161:597-603.
  • [71]Weyer SW, Klevanski M, Delekate A, Voikar V, Aydin D, Hick M, Filippov M, Drost N, Schaller KL, Saar M, Vogt MA, Gass P, Samanta A, Jäschke A, Korte M, Wolfer DP, Caldwell JH, Müller UC: APP and APLP2 are essential at PNS and CNS synapses for transmission, spatial learning and LTP. EMBO J 2011, 30:2266-2280.
  • [72]Chang KA, Kim HS, Ha TY, Ha JW, Shin KY, Jeong YH, Lee JP, Park CH, Kim S, Baik TK, Suh YH: Phosphorylation of amyloid precursor protein (APP) at Thr668 regulates the nuclear translocation of the APP intracellular domain and induces neurodegeneration. Mol Cell Biol 2006, 26:4327-4338.
  • [73]Aplin AE, Gibb GM, Jacobsen JS, Gallo JM, Anderton BH: In vitro phosphorylation of the cytoplasmic domain of the amyloid precursor protein by glycogen synthase kinase-3beta. J Neurochem 1996, 67:699-707.
  • [74]Phiel CJ, Wilson CA, Lee VM, Klein PS: GSK-3alpha regulates production of Alzheimer’s disease amyloid-beta peptides. Nature 2003, 423:435-439.
  • [75]Muresan Z, Muresan V: The amyloid-beta precursor protein is phosphorylated via distinct pathways during differentiation, mitosis, stress, and degeneration. Mol Biol Cell 2007, 18:3835-3844.
  • [76]Laird FM, Cai H, Savonenko AV, Farah MH, He K, Melnikova T, Wen H, Chiang HC, Xu G, Koliatsos VE, Borchelt DR, Price DL, Lee HK, Wong PC: BACE1, a major determinant of selective vulnerability of the brain to amyloid-beta amyloidogenesis, is essential for cognitive, emotional, and synaptic functions. J Neurosci 2005, 25:11693-11709.
  • [77]Dominguez D, Tournoy J, Hartmann D, Huth T, Cryns K, Deforce S, Serneels L, Camacho IE, Marjaux E, Craessaerts K, Roebroek AJ, Schwake M, D’Hooge R, Bach P, Kalinke U, Moechars D, Alzheimer C, Reiss K, Saftig P, De Strooper B: Phenotypic and biochemical analyses of BACE1- and BACE2-deficient mice. J Biol Chem 2005, 280:30797-30806.
  • [78]Willem M, Garratt AN, Novak B, Citron M, Kaufmann S, Rittger A, DeStrooper B, Saftig P, Birchmeier C, Haass C: Control of peripheral nerve myelination by the beta-secretase BACE1. Science 2006, 314:664-666.
  • [79]Jha S, Srivastava SY, Brickey WJ, Iocca H, Toews A, Morrison JP, Chen VS, Gris D, Matsushima GK, Ting JP: The inflammasome sensor, NLRP3, regulates CNS inflammation and demyelination via caspase-1 and interleukin-18. J Neurosci 2010, 30:15811-15820.
  • [80]Blasko I, Beer R, Bigl M, Apelt J, Franz G, Rudzki D, Ransmayr G, Kampfl A, Schliebs R: Experimental traumatic brain injury in rats stimulates the expression, production and activity of Alzheimer's disease beta-secretase (BACE-1). J Neural Transm 2004, 111:523-536.
  • [81]Steiner H, Winkler E, Edbauer D, Prokop S, Basset G, Yamasaki A, Kostka M, Haass C: PEN-2 is an integral component of the gamma-secretase complex required for coordinated expression of presenilin and nicastrin. J Biol Chem 2002, 277:39062-39065.
  • [82]Shen J, Bronson RT, Chen DF, Xia W, Selkoe DJ, Tonegawa S: Skeletal and CNS defects in Presenilin-1-deficient mice. Cell 1997, 89:629-639.
  • [83]Gadadhar A, Marr R, Lazarov O: Presenilin-1 regulates neural progenitor cell differentiation in the adult brain. J Neurosci 2011, 31:2615-2623.
  • [84]Spasic D, Annaert W: Building gamma-secretase: the bits and pieces. J Cell Sci 2008, 121:413-420.
  • [85]Hemming ML, Elias JE, Gygi SP, Selkoe DJ: Proteomic profiling of gamma-secretase substrates and mapping of substrate requirements. PLoS Biol 2008, 6:2314-2328.
  • [86]Coen K, Annaert W: Presenilins: how much more than γ-secretase?! Biochem Soc Trans 2010, 38:1474-1478.
  • [87]McLean CA, Cherny RA, Fraser FW, Fuller SJ, Smith MJ, Beyreuther K, Bush AI, Masters CL: Soluble pool of Abeta amyloid as a determinant of severity of neurodegeneration in Alzheimer’s disease. Ann Neurol 1999, 46:860-866.
  • [88]Näslund J, Haroutunian V, Mohs R, Davis KL, Davies P, Greengard P, Buxbaum JD: Correlation between elevated levels of amyloid beta-peptide in the brain and cognitive decline. JAMA 2000, 283:1571-1577.
  • [89]Lesné S, Koh MT, Kotilinek L, Kayed R, Glabe CG, Yang A, Gallagher M, Ashe KH: A specific amyloid-beta protein assembly in the brain impairs memory. Nature 2006, 440:352-357.
  • [90]Lopez OL, Kuller LH, Mehta PD, Becker JT, Gach HM, Sweet RA, Chang YF, Tracy R, DeKosky ST: Plasma amyloid levels and the risk of AD in normal subjects in the Cardiovascular Health Study. Neurology 2008, 70:1664-1671.
  • [91]Mawuenyega KG, Sigurdson W, Ovod V, Munsell L, Kasten T, Morris JC, Yarasheski KE, Bateman RJ, Mawuenyega KG, Sigurdson W, Ovod V, Munsell L, Kasten T, Morris JC, Yarasheski KE, Bateman RJ: Decreased clearance of CNS beta-amyloid in Alzheimer’s disease. Science 2010, 330:1774.
  • [92]Kamenetz F, Tomita T, Hsieh H, Seabrook G, Borchelt D, Iwatsubo T, Sisodia S, Malinow R: APP processing and synaptic function. Neuron 2003, 37:925-937.
  • [93]Kienlen-Campard P, Miolet S, Tasiaux B, Octave JN: Intracellular amyloid-beta 1–42, but not extracellular soluble amyloid-beta peptides, induces neuronal apoptosis. J Biol Chem 2002, 277:15666-15670.
  • [94]Magrané J, Rosen KM, Smith RC, Walsh K, Gouras GK, Querfurth HW: Intraneuronal beta-amyloid expression downregulates the Akt survival pathway and blunts the stress response. J Neurosci 2005, 25:10960-10969.
  • [95]Lannfelt L, Basun H, Wahlund LO, Rowe BA, Wagner SL: Decreased alpha-secretase-cleaved amyloid precursor protein as a diagnostic marker for Alzheimer’s disease. Nat Med 1995, 1:829-832.
  • [96]Gakhar-Koppole N, Hundeshagen P, Mandl C, Weyer SW, Allinquant B, Müller U, Ciccolini F: Activity requires soluble amyloid precursor protein alpha to promote neurite outgrowth in neural stem cell-derived neurons via activation of the MAPK pathway. Eur J Neurosci 2008, 28:871-882.
  • [97]Perez RG, Zheng H, Van der Ploeg LH, Koo EH: The beta-amyloid precursor protein of Alzheimer’s disease enhances neuron viability and modulates neuronal polarity. J Neurosci 1997, 17:9407-9414.
  • [98]Caillé I, Allinquant B, Dupont E, Bouillot C, Langer A, Müller U, Prochiantz A: Soluble form of amyloid precursor protein regulates proliferation of progenitors in the adult subventricular zone. Development 2004, 131:2173-2181.
  • [99]Kamal A, Almenar-Queralt A, LeBlanc JF, Roberts EA, Goldstein LS: Kinesin-mediated axonal transport of a membrane compartment containing beta-secretase and presenilin-1 requires APP. Nature 2001, 414:643-648.
  • [100]Cao X, Südhof TC: Dissection of amyloid-beta precursor protein-dependent transcriptional transactivation. J Biol Chem 2004, 279:24601-24611.
  • [101]Freude KK, Penjwini M, Davis JL, Laferla FM, Blurton-Jones M: Soluble amyloid precursor protein induces rapid neural differentiation of human embryonic stem cells. J Biol Chem 2011, 286:24264-24274.
  • [102]Chang KA, Suh YH: Pathophysiological roles of amyloidogenic carboxy-terminal fragments of the beta-amyloid precursor protein in Alzheimer’s disease. J Pharmacol Sci 2005, 97:461-471.
  • [103]Müller T, Concannon CG, Ward MW, Walsh CM, Tirniceriu AL, Tribl F, Kögel D, Prehn JH, Egensperger R: Modulation of gene expression and cytoskeletal dynamics by the amyloid precursor protein intracellular domain (AICD). Mol Biol Cell 2007, 18:201-210.
  • [104]Liu ML, Hong ST: Early phase of amyloid beta42-induced cytotoxicity in neuronal cells is associated with vacuole formation and enhancement of exocytosis. Exp Mol Med 2005, 37:559-566.
  • [105]Costa RO, Ferreiro E, Martins I, Santana I, Cardoso SM, Oliveira CR, Pereira CM: Amyloid β-induced ER stress is enhanced under mitochondrial dysfunction conditions. Neurobiol Aging 2011, 33:824. e5-824.e16
  • [106]Urase K, Momoi T, Fujita E, Isahara K, Uchiyama Y, Tokunaga A, Nakayama K, Motoyama N: Bcl-xL is a negative regulator of caspase-3 activation in immature neurons during development. Brain Res Dev Brain Res 1999, 116:69-78.
  • [107]Roth KA, Kuan C, Haydar TF, D’Sa-Eipper C, Shindler KS, Zheng TS, Kuida K, Flavell RA, Rakic P: Epistatic and independent functions of caspase-3 and Bcl-X(L) in developmental programmed cell death. Proc Natl Acad Sci USA 2000, 97:466-471.
  • [108]Luetjens CM, Lankiewicz S, Bui NT, Krohn AJ, Poppe M, Prehn JH: Up-regulation of Bcl-xL in response to subtoxic beta-amyloid: role in neuronal resistance against apoptotic and oxidative injury. Neuroscience 2001, 102:139-150.
  文献评价指标  
  下载次数:63次 浏览次数:51次