期刊论文详细信息
Journal of Neuroinflammation
Enhanced CD8 T-cell anti-viral function and clinical disease in B7-H1-deficient mice requires CD4 T cells during encephalomyelitis
Cornelia C Bergmann1  David R Hinton2  Stephen A Stohlman1  Timothy W Phares1 
[1] Departments of Neurosciences NC30, Lerner Research Institute, Cleveland Clinic Foundation, 9500 Euclid Avenue, Cleveland, OH, 44195, USA;Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
关键词: Axonal damage;    Inflammation;    Gliatropic coronavirus;    CD4+ and CD8+ T cells;    Encephalomyelitis;    Central nervous system;   
Others  :  1160119
DOI  :  10.1186/1742-2094-9-269
 received in 2012-07-31, accepted in 2012-12-03,  发布年份 2012
PDF
【 摘 要 】

Background

Anti-viral CD8 T-cell activity is enhanced and prolonged by CD4 T-cell-mediated help, but negatively regulated by inhibitory B7-H1 interactions. During viral encephalomyelitis, the absence of CD4 T cells decreases CD8 T cell activity and impedes viral control in the central nervous system (CNS). By contrast, the absence of B7-H1 enhances CD8 T-cell function and accelerates viral control, but increases morbidity. However, the relative contribution of CD4 T cells to CD8 function in the CNS, in the absence of B7-H1, remains unclear.

Methods

Wild-type (WT) and B7-H1−/− mice were infected with a gliatropic coronavirus and CD4 T cells depleted to specifically block T helper function in the CNS. Flow cytometry and gene expression analysis of purified T-cell populations from lymph nodes and the CNS was used to directly monitor ex vivo T-cell effector function. The biological affects of altered T-cell responses were evaluated by analysis of viral control and spinal-cord pathology.

Results

Increased anti-viral activity by CD8 T cells in the CNS of B7-H1−/− mice was lost upon depletion of CD4 T cells; however, despite concomitant loss of viral control, the clinical disease was less severe. CD4 depletion in B7-H1−/− mice also decreased inducible nitric oxide synthase expression by microglia and macrophages, consistent with decreased microglia/macrophage activation and reduced interferon (IFN)-γ. Enhanced production of IFN-γ, interleukin (IL)-10 and IL-21 mRNA was seen in CD4 T cells from infected B7-H1−/− compared with WT mice, suggesting that over-activated CD4 T cells primarily contribute to the increased pathology.

Conclusions

The local requirement of CD4 T-cell help for CD8 T-cell function is not overcome if B7-H1 inhibitory signals are lost. Moreover, the increased effector activity by CD8 T cells in the CNS of B7-H1−/− mice is attributable not only to the absence of B7-H1 upregulation on major histocompatibility complex class I-presenting resident target cells, but also to enhanced local CD4 T-cell function. B7-H1-mediated restraint of CD4 T-cell activity is thus crucial to dampen both CD8 T-cell function and microglia/macrophage activation, thereby providing protection from T-cell-mediated bystander damage.

【 授权许可】

   
2012 Phares et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150410094136100.pdf 3456KB PDF download
Figure 10. 142KB Image download
Figure 9. 356KB Image download
Figure 8. 77KB Image download
Figure 7. 50KB Image download
Figure 6. 108KB Image download
Figure 5. 62KB Image download
Figure 4. 89KB Image download
Figure 3. 102KB Image download
Figure 2. 65KB Image download
Figure 1. 106KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

Figure 7.

Figure 8.

Figure 9.

Figure 10.

【 参考文献 】
  • [1]Beuneu H, Garcia Z, Bousso P: Cutting edge: cognate CD4 help promotes recruitment of antigen-specific CD8 T cells around dendritic cells. J Immunol 2006, 177:1406-1410.
  • [2]Castellino F, Huang AY, Altan-Bonnet G, Stoll S, Scheinecker C, Germain RN: Chemokines enhance immunity by guiding naive CD8+ T cells to sites of CD4+ T cell-dendritic cell interaction. Nature 2006, 440:890-895.
  • [3]Frank GM, Lepisto AJ, Freeman ML, Sheridan BS, Cherpes TL, Hendricks RL: Early CD4(+) T cell help prevents partial CD8(+) T cell exhaustion and promotes maintenance of Herpes Simplex Virus 1 latency. J Immunol 2010, 184:277-286.
  • [4]Lane TE, Liu MT, Chen BP, Asensio VC, Samawi RM, Paoletti AD, Campbell IL, Kunkel SL, Fox HS, Buchmeier MJ: A central role for CD4(+) T cells and RANTES in virus-induced central nervous system inflammation and demyelination. J Virol 2000, 74:1415-1424.
  • [5]Nakanishi Y, Lu B, Gerard C, Iwasaki A: CD8(+) T lymphocyte mobilization to virus-infected tissue requires CD4(+) T-cell help. Nature 2009, 462:510-513.
  • [6]Novy P, Quigley M, Huang X, Yang Y: CD4 T cells are required for CD8 T cell survival during both primary and memory recall responses. J Immunol 2007, 179:8243-8251.
  • [7]Overstreet MG, Chen YC, Cockburn IA, Tse SW, Zavala F: CD4+ T cells modulate expansion and survival but not functional properties of effector and memory CD8+ T cells induced by malaria sporozoites. PLoS One 2011, 6:e15948.
  • [8]Phares TW, Stohlman SA, Hwang M, Min B, Hinton DR, Bergmann CC: CD4 T cells promote CD8 T cell immunity at the priming and effector site during viral encephalitis. J Virol 2012, 86:2416-2427.
  • [9]Altfeld M, Rosenberg ES: The role of CD4(+) T helper cells in the cytotoxic T lymphocyte response to HIV-1. Curr Opin Immunol 2000, 12:375-380.
  • [10]Matloubian M, Concepcion RJ, Ahmed R: CD4+ T cells are required to sustain CD8+ cytotoxic T-cell responses during chronic viral infection. J Virol 1994, 68:8056-8063.
  • [11]Zajac AJ, Blattman JN, Murali-Krishna K, Sourdive DJ, Suresh M, Altman JD, Ahmed R: Viral immune evasion due to persistence of activated T cells without effector function. J Exp Med 1998, 188:2205-2213.
  • [12]Day CL, Kaufmann DE, Kiepiela P, Brown JA, Moodley ES, Reddy S, Mackey EW, Miller JD, Leslie AJ, DePierres C, et al.: PD-1 expression on HIV-specific T cells is associated with T-cell exhaustion and disease progression. Nature 2006, 443:350-354.
  • [13]Peng G, Li S, Wu W, Tan X, Chen Y, Chen Z: PD-1 upregulation is associated with HBV-specific T cell dysfunction in chronic hepatitis B patients. Mol Immunol 2008, 45:963-970.
  • [14]Penna A, Pilli M, Zerbini A, Orlandini A, Mezzadri S, Sacchelli L, Missale G, Ferrari C: Dysfunction and functional restoration of HCV-specific CD8 responses in chronic hepatitis C virus infection. Hepatology 2007, 45:588-601.
  • [15]Phares TW, Stohlman SA, Hinton DR, Atkinson R, Bergmann CC: Enhanced antiviral T cell function in the absence of B7-H1 is insufficient to prevent persistence but exacerbates axonal bystander damage during viral encephalomyelitis. J Immunol 2010, 185:5607-5618.
  • [16]Savarin C, Bergmann CC, Hinton DR, Ransohoff RM, Stohlman SA: Memory CD4+ T-cell-mediated protection from lethal coronavirus encephalomyelitis. J Virol 2008, 82:12432-12440.
  • [17]Stohlman SA, Hinton DR, Parra B, Atkinson R, Bergmann CC: CD4 T cells contribute to virus control and pathology following central nervous system infection with neurotropic mouse hepatitis virus. J Virol 2008, 82:2130-2139.
  • [18]Sussman MA, Shubin RA, Kyuwa S, Stohlman SA: T-cell-mediated clearance of mouse hepatitis virus strain JHM from the central nervous system. J Virol 1989, 63:3051-3056.
  • [19]Williamson JS, Stohlman SA: Effective clearance of mouse hepatitis virus from the central nervous system requires both CD4+ and CD8+ T cells. J Virol 1990, 64:4589-4592.
  • [20]Bergmann CC, Altman JD, Hinton D, Stohlman SA: Inverted immunodominance and impaired cytolytic function of CD8+ T cells during viral persistence in the central nervous system. J Immunol 1999, 163:3379-3387.
  • [21]Bergmann CC, Lane TE, Stohlman SA: Coronavirus infection of the central nervous system: host-virus stand-off. Nat Rev Microbiol 2006, 4:121-132.
  • [22]Phares TW, Ramakrishna C, Parra GI, Epstein A, Chen L, Atkinson R, Stohlman SA, Bergmann CC: Target-dependent B7-H1 regulation contributes to clearance of central nervous system infection and dampens morbidity. J Immunol 2009, 182:5430-5438.
  • [23]Malone KE, Stohlman SA, Ramakrishna C, Macklin W, Bergmann CC: Induction of class I antigen processing components in oligodendroglia and microglia during viral encephalomyelitis. Glia 2008, 56:426-435.
  • [24]Anghelina D, Pewe L, Perlman S: Pathogenic role for virus-specific CD4 T cells in mice with coronavirus-induced acute encephalitis. Am J Pathol 2006, 169:209-222.
  • [25]Dong H, Zhu G, Tamada K, Flies DB, van Deursen JM, Chen L: B7-H1 determines accumulation and deletion of intrahepatic CD8(+) T lymphocytes. Immunity 2004, 20:327-336.
  • [26]Fleming JO, Trousdale MD, El-Zaatari FA, Stohlman SA, Weiner LP: Pathogenicity of antigenic variants of murine coronavirus JHM selected with monoclonal antibodies. J Virol 1986, 58:869-875.
  • [27]Ireland DD, Stohlman SA, Hinton DR, Kapil P, Silverman RH, Atkinson RA, Bergmann CC: RNase L mediated protection from virus induced demyelination. PLoS pathogens 2009, 5:e1000602.
  • [28]Phares TW, Marques CP, Stohlman SA, Hinton DR, Bergmann CC: Factors supporting intrathecal humoral responses following viral encephalomyelitis. J Virol 2011, 85:2589-2598.
  • [29]Trandem K, Zhao J, Fleming E, Perlman S: Highly activated cytotoxic CD8 T cells express protective IL-10 at the peak of coronavirus-induced encephalitis. J Immunol 2011, 186:3642-3652.
  • [30]Kapil P, Butchi NB, Stohlman SA, Bergmann CC: Oligodendroglia are limited in type I interferon induction and responsiveness in vivo. Glia 2012, 60:1555-1566.
  • [31]Barker BR, Gladstone MN, Gillard GO, Panas MW, Letvin NL, Barker BR, Gladstone MN, Gillard GO, Panas MW, Letvin NL: Critical role for IL-21 in both primary and memory anti-viral CD8(+) T-cell responses. Eur J Immunol 2010, 40:2990-2992.
  • [32]Elsaesser H, Sauer K, Brooks DG: IL-21 is required to control chronic viral infection. Science 2009, 324:1569-1572.
  • [33]Frohlich A, Kisielow J, Schmitz I, Freigang S, Shamshiev AT, Weber J, Marsland BJ, Oxenius A, Kopf M: IL-21R on T cells is critical for sustained functionality and control of chronic viral infection. Science 2009, 324:1576-1580.
  • [34]Novy P, Huang X, Leonard WJ, Yang Y: Intrinsic IL-21 signaling is critical for CD8 T cell survival and memory formation in response to vaccinia viral infection. J Immunol 2011, 186:2729-2738.
  • [35]Yi JS, Du M, Zajac AJ: A vital role for interleukin-21 in the control of a chronic viral infection. Science 2009, 324:1572-1576.
  • [36]Hamo L, Stohlman SA, Otto-Duessel M, Bergmann CC: Distinct regulation of MHC molecule expression on astrocytes and microglia during viral encephalomyelitis. Glia 2007, 55:1169-1177.
  • [37]Zhou H, Perlman S: Preferential infection of mature dendritic cells by mouse hepatitis virus strain JHM. J Virol 2006, 80:2506-2514.
  • [38]Cervantes-Barragan L, Kalinke U, Zust R, Konig M, Reizis B, Lopez-Macias C, Thiel V, Ludewig B: Type I IFN-mediated protection of macrophages and dendritic cells secures control of murine coronavirus infection. J Immunol 2009, 182:1099-1106.
  • [39]Mana P, Linares D, Fordham S, Staykova M, Willenborg D: Deleterious role of IFNgamma in a toxic model of central nervous system demyelination. Am J Pathol 2006, 168:1464-1473.
  • [40]Popko B, Corbin JG, Baerwald KD, Dupree J, Garcia AM: The effects of interferon-gamma on the central nervous system. Mol Neurobiol 1997, 14:19-35.
  • [41]Bantug GR, Cekinovic D, Bradford R, Koontz T, Jonjic S, Britt WJ: CD8+ T lymphocytes control murine cytomegalovirus replication in the central nervous system of newborn animals. J Immunol 2008, 181:2111-2123.
  • [42]Simmons A, Tscharke DC: Anti-CD8 impairs clearance of herpes simplex virus from the nervous system: implications for the fate of virally infected neurons. J Exp Med 1992, 175:1337-1344.
  • [43]Kimura T, Griffin DE: The role of CD8(+) T cells and major histocompatibility complex class I expression in the central nervous system of mice infected with neurovirulent Sindbis virus. J Virol 2000, 74:6117-6125.
  • [44]Shrestha B, Diamond MS: Role of CD8+ T cells in control of West Nile virus infection. J Virol 2004, 78:8312-8321.
  • [45]Barber DL, Wherry EJ, Masopust D, Zhu B, Allison JP, Sharpe AH, Freeman GJ, Ahmed R: Restoring function in exhausted CD8 T cells during chronic viral infection. Nature 2006, 439:682-687.
  • [46]Freeman GJ, Wherry EJ, Ahmed R, Sharpe AH: Reinvigorating exhausted HIV-specific T cells via PD-1-PD-1 ligand blockade. J Exp Med 2006, 203:2223-2227.
  • [47]Jeong HY, Lee YJ, Seo SK, Lee SW, Park SJ, Lee JN, Sohn HS, Yao S, Chen L, Choi I: Blocking of monocyte-associated B7-H1 (CD274) enhances HCV-specific T cell immunity in chronic hepatitis C infection. J Leukoc Biol 2008, 83:755-764.
  • [48]Urbani S, Amadei B, Tola D, Pedrazzi G, Sacchelli L, Cavallo MC, Orlandini A, Missale G, Ferrari C: Restoration of HCV-specific T cell functions by PD-1/PD-L1 blockade in HCV infection: effect of viremia levels and antiviral treatment. J Hepatol 2008, 48:548-558.
  • [49]Ortler S, Leder C, Mittelbronn M, Zozulya AL, Knolle PA, Chen L, Kroner A, Wiendl H: B7-H1 restricts neuroantigen-specific T cell responses and confines inflammatory CNS damage: implications for the lesion pathogenesis of multiple sclerosis. Eur J Immunol 2008, 38:1734-1744.
  • [50]Muller AJ, Filipe-Santos O, Eberl G, Aebischer T, Spath GF, Bousso P: CD4(+) T cells rely on a cytokine gradient to control intracellular pathogens beyond sites of antigen presentation. Immunity 2012, 37:147-157.
  • [51]Howe CL, Adelson JD, Rodriguez M: Absence of perforin expression confers axonal protection despite demyelination. Neurobiol Dis 2007, 25:354-359.
  • [52]Deb C, Lafrance-Corey RG, Schmalstieg WF, Sauer BM, Wang H, German CL, Windebank AJ, Rodriguez M, Howe CL: CD8+ T cells cause disability and axon loss in a mouse model of multiple sclerosis. PLoS One 2010, 5:e12478.
  • [53]Kim TS, Perlman S: Viral expression of CCL2 is sufficient to induce demyelination in RAG1−/− mice infected with a neurotropic coronavirus. J Virol 2005, 79:7113-7120.
  • [54]Savarin C, Stohlman SA, Atkinson R, Ransohoff RM, Bergmann CC: Monocytes regulate T cell migration through the glia limitans during acute viral encephalitis. J Virol 2010, 84:4878-4888.
  • [55]Howe CL, Lafrance-Corey RG, Sundsbak RS, Lafrance SJ: Inflammatory monocytes damage the hippocampus during acute picornavirus infection of the brain. J Neuroinflammation 2012, 9:50. BioMed Central Full Text
  • [56]Ajami B, Bennett JL, Krieger C, McNagny KM, Rossi FM: Infiltrating monocytes trigger EAE progression, but do not contribute to the resident microglia pool. Nat Neurosci 2011, 14:1142-1149.
  • [57]Hendriks JJ, Teunissen CE, de Vries HE, Dijkstra CD: Macrophages and neurodegeneration. Brain Res Brain Res Rev 2005, 48:185-195.
  • [58]Bagasra O, Michaels FH, Zheng YM, Bobroski LE, Spitsin SV, Fu ZF, Tawadros R, Koprowski H: Activation of the inducible form of nitric oxide synthase in the brains of patients with multiple sclerosis. Proc Natl Acad Sci U S A 1995, 92:12041-12045.
  • [59]Bo L, Dawson TM, Wesselingh S, Mork S, Choi S, Kong PA, Hanley D, Trapp BD: Induction of nitric oxide synthase in demyelinating regions of multiple sclerosis brains. Ann Neurol 1994, 36:778-786.
  • [60]Okuda Y, Nakatsuji Y, Fujimura H, Esumi H, Ogura T, Yanagihara T, Sakoda S: Expression of the inducible isoform of nitric oxide synthase in the central nervous system of mice correlates with the severity of actively induced experimental allergic encephalomyelitis. J Neuroimmunol 1995, 62:103-112.
  • [61]Hooper DC, Ohnishi ST, Kean R, Numagami Y, Dietzschold B, Koprowski H: Local nitric oxide production in viral and autoimmune diseases of the central nervous system. Proc Natl Acad Sci U S A 1995, 92:5312-5316.
  • [62]Cross AH, Keeling RM, Goorha S, San M, Rodi C, Wyatt PS, Manning PT, Misko TP: Inducible nitric oxide synthase gene expression and enzyme activity correlate with disease activity in murine experimental autoimmune encephalomyelitis. J Neuroimmunol 1996, 71:145-153.
  • [63]Radi R, Beckman JS, Bush KM, Freeman BA: Peroxynitrite-induced membrane lipid peroxidation: the cytotoxic potential of superoxide and nitric oxide. Arch Biochem Biophys 1991, 288:481-487.
  • [64]Radi R, Beckman JS, Bush KM, Freeman BA: Peroxynitrite oxidation of sulfhydryls. The cytotoxic potential of superoxide and nitric oxide. J Biol Chem 1991, 266:4244-4250.
  • [65]Szabo C: DNA strand breakage and activation of poly-ADP ribosyltransferase: a cytotoxic pathway triggered by peroxynitrite. Free Radic Biol Med 1996, 21:855-869.
  • [66]Beckmann JS, Ye YZ, Anderson PG, Chen J, Accavitti MA, Tarpey MM, White CR: Extensive nitration of protein tyrosines in human atherosclerosis detected by immunohistochemistry. Biol chem Hoppe-Seyler 1994, 375:81-88.
  • [67]Wu GF, Pewe L, Perlman S: Coronavirus-induced demyelination occurs in the absence of inducible nitric oxide synthase. J Virol 2000, 74:7683-7686.
  文献评价指标  
  下载次数:82次 浏览次数:8次