期刊论文详细信息
Journal of Neurodevelopmental Disorders
Comparative DNA methylation among females with neurodevelopmental disorders and seizures identifies TAC1 as a MeCP2 target gene
Pat Levitt2  Jasmine T Plummer1  Kimberly A Aldinger1 
[1] Zilkha Neurogenetic Institute, Keck School of Medicine of USC, 1501 San Pablo Street, Los Angeles, CA 90089, USA;Department of Cell & Neurobiology, Keck School of Medicine of USC, Los Angeles, CA 90089, USA
关键词: Epilepsy;    Rett syndrome;    Autism;    Epigenetics;    MeCP2;    DNA methylation;   
Others  :  806331
DOI  :  10.1186/1866-1955-5-15
 received in 2013-03-15, accepted in 2013-05-22,  发布年份 2013
PDF
【 摘 要 】

Background

Several proteins involved in epigenetic regulation cause syndromic neurodevelopmental disorders when human genes are mutated. More general involvement of epigenetic mechanisms in neurodevelopmental phenotypes is unclear.

Methods

In an attempt to determine whether DNA methylation differentiates clinical subgroups, profiling was performed on bisulfite converted DNA from lymphoblastoid cell lines (LCLs) in discovery (n = 20) and replication (n = 40) cohorts of females with Rett syndrome (RTT; n = 18), autism (AUT; n = 17), seizure disorder (SEZ; n = 6), and controls (CTL; n = 19) using Illumina HumanMethylation27 arrays. TAC1 CpGs were validated using a Sequenom EpiTYPER assay and expression was measured in LCLs and postmortem brain. Chromatin immunoprecipitation was performed in HEK cells. Cells were treated with valproic acid and MeCP2 binding was assessed.

Results

Two female-only cohorts were analyzed. DNA methylation profiling in a discovery cohort identified 40 CpGs that exhibited statistically significant differential methylation (≥15%) between clinical groups (P <0.01). Hierarchical clustering and principal components analysis suggested neurodevelopmental groups were distinct from CTL, but not from each other. In a larger and more heterogeneous replication cohort, these 40 CpG sites suggested no clear difference between clinical groups. Pooled analysis of DNA methylation across all 60 samples suggested only four differentially methylated CpG sites (P <0.0005), including TAC1. TAC1 promoter CpG hypermethylation was validated in AUT and SEZ (P <0.005). Analyzed for the first time in postmortem brain, TAC1 expression was reduced in cingulate cortex in RTT and AUT+SEZ (P = 0.003). However, no significant difference in TAC1 promoter CpG methylation was detected in RTT and AUT+SEZ brains. Additional molecular analyses revealed that MeCP2 binds directly to the TAC1 promoter and is sensitive to antiepileptic drug treatment.

Conclusion

These data suggest that DNA methylation is not widely altered in RTT, consistent with subtle changes in gene expression previously observed. However, TAC1 may be an important target for further functional analyses in RTT. Studies of larger sample cohorts using primary cells that also consider shared clinical features and drug treatments may be required to address apparent subtle disruptions of DNA methylation in neurodevelopmental disorders.

【 授权许可】

   
2013 Aldinger et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20140708092446586.pdf 1255KB PDF download
Figure 4. 58KB Image download
Figure 3. 83KB Image download
Figure 2. 59KB Image download
Figure 1. 112KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

【 参考文献 】
  • [1]Robertson KD: DNA methylation and human disease. Nat Rev Genet 2005, 6:597-610.
  • [2]Ma DK, Marchetto MC, Guo JU, Ming GL, Gage FH, Song H: Epigenetic choreographers of neurogenesis in the adult mammalian brain. Nat Neurosci 2010, 13:1338-1344.
  • [3]Feng J, Fan G: The role of DNA methylation in the central nervous system and neuropsychiatric disorders. Int Rev Neurobiol 2010, 89:67-84.
  • [4]Day JJ, Sweatt JD: Epigenetic mechanisms in cognition. Neuron 2011, 70:813-829.
  • [5]Bagot RC, Meaney MJ: Epigenetics and the biological basis of gene x environment interactions. J Am Acad Child Adolesc Psychiatry 2010, 49:752-771.
  • [6]Amir RE, Van den Veyver IB, Wan M, Tran CQ, Francke U, Zoghbi HY: Rett syndrome is caused by mutations in X-linked MECP2, encoding methyl-CpG-binding protein 2. Nat Genet 1999, 23:185-188.
  • [7]Nan X, Ng HH, Johnson CA, Laherty CD, Turner BM, Eisenman RN, Bird A: Transcriptional repression by the methyl-CpG-binding protein MeCP2 involves a histone deacetylase complex. Nature 1998, 393:386-389.
  • [8]Miranda TB, Jones PA: DNA methylation: the nuts and bolts of repression. J Cell Physiol 2007, 213:384-390.
  • [9]Tsankova N, Renthal W, Kumar A, Nestler EJ: Epigenetic regulation in psychiatric disorders. Nat Rev Neurosci 2007, 8:355-367.
  • [10]Jakovcevski M, Akbarian S: Epigenetic mechanisms in neurological disease. Nat Med 2012, 18:1194-1204.
  • [11]Coriell Cell Repositoryhttp://ccr.coriell.org/ webcite
  • [12]NIMH Center for Collaborative Genetic Studies on Mental Disordershttps://www.nimhgenetics.org/ webcite
  • [13]Harvard Brain Tissue Resource Center:  . http://www.brainbank.mclean.org/ webcite
  • [14]NICHD Brain and Tissue Bankhttp://medschool.umaryland.edu/BTBank/ webcite
  • [15]Teschendorff AE, Menon U, Gentry-Maharaj A, Ramus SJ, Weisenberger DJ, Shen H, Campan M, Noushmehr H, Bell CG, Maxwell AP, Savage DA, Mueller-Holzner E, Marth C, Kocjan G, Gayther SA, Jones A, Beck S, Wagner W, Laird PW, Jacobs IJ, Widschwendter M: Age-dependent DNA methylation of genes that are suppressed in stem cells is a hallmark of cancer. Genome Res 2010, 20:440-446.
  • [16]Noushmehr H, Weisenberger DJ, Diefes K, Phillips HS, Pujara K, Berman BP, Sulman EP, Bhat KP, Verhaak RG, Hoadley KA, Hayes DN, Perou CM, Schmidt HK, Ding L, Wilson RK, Van Den Berg D, Shen H, Bengtsson H, Neuvial P, Cope LM, Buckley J, Herman JG, Baylin SB, Laird PW, Aldape K: Cancer genome atlas research network: identification of a CpG island methylator phenotype that defines a distinct subgroup of glioma. Cancer Cell 2010, 17:510-522.
  • [17]EpiDesigner BETAhttp://www.epidesigner.com/ webcite
  • [18]R softwarehttp://r-project.org/ webcite
  • [19]Bibikova M, Le J, Barnes B, Saedinia-Melnyk S, Zhu L, Shen R, Gunderson KL: Genome-wide DNA methylation profiling using Infinium assay. Epigenomics 2009, 1:117-200.
  • [20]Chowdhury S, Erickson SW, MacLeod SL, Cleves MA, Hu P, Karim MA, Hobbs CA: Maternal genome-wide DNA methylation patterns and congenital heart defects. PLoS One 2011, 6:e16506.
  • [21]Dempster EL, Pidsley R, Schalkwyk LC, Owens S, Georgiades A, Kane F, Kalidini S, Picchioni M, Kravariti E, Toulopoulou T, Murray RM, Mill J: Disease-associated epigenetic changes in monozygotic twins discordant for schizophrenia and bipolar disorder. Hum Mol Genet 2011, 20:4786-4796.
  • [22]Grigoriu A, Ferreira JC, Choufani S, Baczyk D, Kingdom J, Weksberg R: Cell specific patterns of methylation in the human placenta. Epigenetics 2011, 6:368-379.
  • [23]Weisenberger DJ, Van Den Berg D, Pan F, Berman BP, Laird PW: Comprehensive DNA Methylation Analysis on the Illumina Infinium Assay Platform. San Diego, CA: Illumina; 2008.
  • [24]Naumova OY, Lee M, Koposov R, Szyf M, Dozier M, Grigorenko EL: Differential patterns of whole-genome DNA methylation in institutionalized children and children raised by their biological parents. Dev Psychopathol 2012, 24:143-155.
  • [25]Glaze DG, Percy AK, Skinner S, Motil KJ, Neul JL, Barrish JO, Lane JB, Geerts SP, Annese F, Graham J, McNair L, Lee HS: Epilepsy and the natural history of Rett syndrome. Neurology 2010, 74:909-912.
  • [26]Detich N, Bovenzi V, Szyf M: Valproate induces replication-independent active DNA demethylation. J Biol Chem 2003, 278:27586-27592.
  • [27]Dong E, Chen Y, Gavin DP, Grayson DR, Guidotti A: Valproate induces DNA demethylation in nuclear extracts from adult mouse brain. Epigenetics 2010, 5:730-735.
  • [28]Matsuishi T, Nagamitsu S, Yamashita Y, Murakami Y, Kimura A, Sakai T, Shoji H, Kato H, Percy AK: Decreased cerebrospinal fluid levels of substance P in patients with Rett syndrome. Ann Neurol 1997, 42:978-981.
  • [29]Deguchi K, Reyes C, Chakraborty S, Antalffy B, Glaze D, Armstrong D: Substance P immunoreactivity in the enteric nervous system in Rett syndrome. Brain Dev 2001, 23(Suppl 1):S127-S132.
  • [30]Deguchi K, Antalffy BA, Twohill LJ, Chakraborty S, Glaze DG, Armstrong DD: Substance P immunoreactivity in Rett syndrome. Pediatr Neurol 2000, 22:259-266.
  • [31]Chahrour M, Jung SY, Shaw C, Zhou X, Wong ST, Qin J, Zoghbi HY: MeCP2, a key contributor to neurological disease, activates and represses transcription. Science 2008, 320:1224-1229.
  • [32]McGraw CM, Samaco RC, Zoghbi HY: Adult neural function requires MeCP2. Science 2011, 333:186.
  • [33]Deaton AM, Bird A: CpG islands and the regulation of transcription. Genes Dev 2011, 25:1010-1022.
  • [34]Wu C, Orozco C, Boyer J, Leglise M, Goodale J, Batalov S, Hodge CL, Haase J, Janes J, Huss JW 3rd, Su AL: BioGPS: an extensible and customizable portal for querying and organizing gene annotation resources. Genome Biol 2009, 10:R130. BioMed Central Full Text
  • [35]BioGPShttp://biogps.org/ webcite
  • [36]Johnson MB, Kawasawa YI, Mason CE, Krsnik Z, Coppola G, Bogdanovic D, Geschwind DH, Mane SM, State MW, Sestan N: Functional and evolutionary insights into human brain development through global transcriptome analysis. Neuron 2009, 62:494-509.
  • [37]Human Brain Transcriptomehttp://hbatlas.org/ webcite
  • [38]ATP Informatics Portalhttps://atpportal.org webcite
  • [39]Gibbs JR, van der Brug MP, Hernandez DG, Traynor BJ, Nalls MA, Lai SL, Arepalli S, Dillman A, Rafferty IP, Troncoso J, Johnson R, Zielke HR, Ferrucci L, Longo DL, Cookson MR, Singleton AB: Abundant quantitative trait loci exist for DNA methylation and gene expression in human brain. PLoS Genet 2010, 6:e1000952.
  • [40]Ladd-Acosta C, Pevsner J, Sabunciyan S, Yolken RH, Webster MJ, Dinkins T, Callinan PA, Fan JB, Potash JB, Feinberg AP: DNA methylation signatures within the human brain. Am J Hum Genet 2007, 81:1304-1315.
  • [41]Tao S, Yang X, Chen Y, Wang X, Xiao Z, Wang H, Wu Q, Wang X: Up-regulated methyl CpG binding protein-2 in intractable temporal lobe epilepsy patients and a rat model. Neurochem Res 2012, 37:1886-1897.
  • [42]Laird PW: The power and the promise of DNA methylation markers. Nat Rev Cancer 2003, 3:253-266.
  • [43]Sharma S, Kelly TK, Jones PA: Epigenetics in cancer. Carcinogenesis 2010, 31:27-36.
  • [44]Bosch LJ, Mongera S, Terhaar Sive Droste JS, Oort FA, van Turenhout ST, Penning MT, Louwagie J, Mulder CJ, van Engeland M, Carvalho B, Meijer GA: Analytical sensitivity and stability of DNA methylation testing in stool samples for colorectal cancer detection. Cell Oncol (Dordr) 2012, 35:309-315.
  • [45]Davies MN, Volta M, Pidsley R, Lunnon K, Dixit A, Lovestone S, Coarfa C, Harris RA, Milosavljevic A, Troakes C, Al-Sarraj S, Dobson R, Schalkwyk LC, Mill J: Functional annotation of the human brain methylome identifies tissue-specific epigenetic variation across brain and blood. Genome Biol 2012, 13:R43. BioMed Central Full Text
  • [46]Kaminsky ZA, Tang T, Wang SC, Ptak C, Oh GH, Wong AH, Feldcamp LA, Virtanen C, Halfvarson J, Tysk C, McRae AF, Visscher PM, Montgomery GW, Gottesman II, Martin NG, Petronis A: DNA methylation profiles in monozygotic and dizygotic twins. Nat Genet 2009, 41:240-245.
  • [47]Koestler DC, Marsit CJ, Christensen BC, Accomando W, Langevin SM, Houseman EA, Nelson HH, Karagas MR, Wiencke JK, Kelsey KT: Peripheral blood immune cell methylation profiles are associated with nonhematopoietic cancers. Cancer Epidemiol Biomarkers Prev 2012, 21:1293-1302.
  • [48]Wang L, Aakre JA, Jiang R, Marks RS, Wu Y, Chen J, Thibodeau SN, Pankratz VS, Yang P: Methylation markers for small cell lung cancer in peripheral blood leukocyte DNA. J Thorac Oncol 2010, 5:778-785.
  • [49]Mill J, Tang T, Kaminsky Z, Khare T, Yazdanpanah S, Bouchard L, Jia P, Assadzadeh A, Flanagan J, Schumacher A, Wang SC, Petronis A: Epigenomic profiling reveals DNA-methylation changes associated with major psychosis. Am J Hum Genet 2008, 82:696-711.
  • [50]Zhang D, Cheng L, Badner JA, Chen C, Chen Q, Luo W, Craig WR, Redman M, Gershon ES, Liu C: Genetic control of individual differences in gene-specific methylation in human brain. Am J Hum Genet 2010, 86:411-419.
  • [51]Grafodatskaya D, Choufani S, Ferreira JC, Butcher DT, Lou Y, Zhao C, Scherer SW, Weksberg R: EBV transformation and cell culturing destabilizes DNA methylation in human lymphoblastoid cell lines. Genomics 2010, 95:73-83.
  • [52]Liu J, Zhang Z, Bando M, Itoh T, Deardorff MA, Li JR, Clark D, Kaur M, Tatsuro K, Kline AD, Chang C, Vega H, Jackson LG, Spinner NB, Shirahige K, Krantz ID: Genome-wide DNA methylation analysis in cohesin mutant human cell lines. Nucleic Acids Res 2010, 38:5657-5671.
  • [53]Zhang Z, Liu J, Kaur M, Krantz ID: Characterization of DNA methylation and its association with other biological systems in lymphoblastoid cell lines. Genomics 2012, 99:209-219.
  • [54]Nishimura Y, Martin CL, Vazquez-Lopez A, Spence SJ, Alvarez-Retuerto AI, Sigman M, Steindler C, Pellegrini S, Schanen NC, Warren ST, Geschwind DH: Genome-wide expression profiling of lymphoblastoid cell lines distinguishes different forms of autism and reveals shared pathways. Hum Mol Genet 2007, 16:1682-1698.
  • [55]Voineagu I, Wang X, Johnston P, Lowe JK, Tian Y, Horvath S, Mill J, Cantor RM, Blencowe BJ, Geschwind DH: Transcriptomic analysis of autistic brain reveals convergent molecular pathology. Nature 2011, 474:380-384.
  • [56]Ballestar E, Ropero S, Alaminos M, Armstrong J, Setien F, Agrelo R, Fraga MF, Herranz M, Avila S, Pineda M, Monros E, Esteller M: The impact of MECP2 mutations in the expression patterns of Rett syndrome patients. Hum Genet 2005, 116:91-104.
  • [57]Colantuoni C, Jeon OH, Hyder K, Chenchik A, Khimani AH, Narayanan V, Hoffamn EP, Kaufmann WE, Naidu S, Pevsner J: Gene expression profiling in postmortem Rett Syndrome brain: differential gene expression and patient classification. Neurobiol Dis 2001, 8:847-865.
  • [58]Delgado IJ, Kim DS, Thatcher KN, LaSalle JM, Van den Veyver IB: Expression profiling of clonal lymphocyte cell cultures from Rett syndrome patients. BMC Med Genet 2006, 7:61. BioMed Central Full Text
  • [59]Deng V, Matagne V, Banine F, Frerking M, Ohliger P, Budden S, Pevsner J, Dissen GA, Sherman LS, Ojeda SR: FXYD1 is an MeCP2 target gene overexpressed in the brains of Rett syndrome patients and Mecp2-null mice. Hum Mol Genet 2007, 16:640-650.
  • [60]Gibson JH, Slobedman B, NH K, Williamson SL, Minchenko D, El-Osta A, Stern JL, Christodoulou J: Downstream targets of methyl CpG binding protein 2 and their abnormal expression in the frontal cortex of the human Rett syndrome brain. BMC Neurosci 2010, 11:53. BioMed Central Full Text
  • [61]Traynor J, Agarwal P, Lazzeroni L, Francke U: Gene expression patterns vary in clonal cell cultures from Rett syndrome females with eight different MECP2 mutations. BMC Med Genet 2002, 3:12.
  • [62]Ulrey CL, Liu L, Andrews LG, Tollefsbol TO: The impact of metabolism on DNA methylation. Hum Mol Genet 2005, 14(Spec No 1):139-147.
  • [63]Lim U, Song MA: Dietary and lifestyle factors of DNA methylation. Methods Mol Biol 2012, 863:359-376.
  • [64]Kennerley SW, Walton ME, Behrens TE, Buckley MJ, Rushworth MF: Optimal decision making and the anterior cingulate cortex. Nat Neurosci 2006, 9:940-947.
  • [65]Rudebeck PH, Buckley MJ, Walton ME, Rushworth MF: A role for the macaque anterior cingulate gyrus in social valuation. Science 2006, 313:1310-1312.
  • [66]Sallet J, Quilodran R, Rothe M, Vezoli J, Joseph JP, Procyk E: Expectations, gains, and losses in the anterior cingulate cortex. Cogn Affect Behav Neurosci 2007, 7:327-336.
  • [67]Na ES, Monteggia LM: The role of MeCP2 in CNS development and function. Horm Behav 2011, 59:364-368.
  • [68]Rusnakova S, Daniel P, Chladek J, Jurak P, Rektor I: The executive functions in frontal and temporal lobes: a flanker task intracerebral recording study. J Clin Neurophysiol 2011, 28:30-35.
  • [69]Hokfelt T, Pernow B, Wahren J: Substance P: a pioneer amongst neuropeptides. J Intern Med 2001, 249:27-40.
  • [70]Mai JK, Stephens PH, Hopf A, Cuello AC: Substance P in the human brain. Neuroscience 1986, 17:709-739.
  • [71]Chahrour M, Zoghbi HY: The story of Rett syndrome: from clinic to neurobiology. Neuron 2007, 56:422-437.
  • [72]Pena F, Ramirez JM: Substance P-mediated modulation of pacemaker properties in the mammalian respiratory network. J Neurosci 2004, 24:7549-7556.
  • [73]Gene Expression Omnibushttp://www.ncbi.nlm.nih.gov/geo/ webcite
  文献评价指标  
  下载次数:14次 浏览次数:17次