期刊论文详细信息
GigaScience
Two Antarctic penguin genomes reveal insights into their evolutionary history and molecular changes related to the Antarctic environment
Guojie Zhang2  Jun Wang1,15  David M Lambert1,11  Jian Wang8  Huanming Yang1  M Thomas P Gilbert1,13  Erich D Jarvis3  Chris P Ponting6  David W Burt1,17  Simon YW Ho1,16  Hans Ellegren1,12  Kiwoong Nam1,14  Wanjun Gu7  David D Pollock9  Todd A Castoe1,10  Matthew J Greenwold4  Matthew K Fujita6  Chris M Rands6  Stephen Meader6  Craig D Millar5  Sankar Subramanian1,11  Qiong Shi8  Weiming He8  Jinquan Xia8  Yongshan Lang8  Yan Zhang8  Shiping Liu8  Linfeng Yang8  Binghang Liu8  Yan Chen8  Hao Yu8  Lijun Jin8  Qiye Li1,13  Yuan Deng8  Luohao Xu8  Hailin Pan8  Haofu Hu8  Lesheng Kong6  Jianwen Li8  Yong Zhang8  Cai Li1,13 
[1] Princess Al Jawhara Center of Excellence in the Research of Hereditary Disorders, King Abdulaziz University, Jeddah 21589, Saudi Arabia;Centre for Social Evolution, Department of Biology, Universitetsparken 15, University of Copenhagen, Copenhagen DK-2100, Denmark;Department of Neurobiology, Howard Hughes Medical Institute, Duke University Medical Center, Durham NC27710, USA;Department of Biological Sciences, University of South Carolina, Columbia, SC, USA;Allan Wilson Centre for Molecular Ecology and Evolution, School of Biological Sciences, University of Auckland, Private Bag 92019, Auckland, New Zealand;MRC Functional Genomics Unit, Department of Physiology, Anatomy and Genetics, University of Oxford, South Parks Road, Oxford OX1 3QX, UK;Research Centre of Learning Sciences, Southeast University, Nanjing 210096, China;China National GeneBank, BGI-Shenzhen, Shenzhen 518083, China;Department of Biochemistry and Molecular Genetics, School of Medicine, University of Colorado, Aurora, CO 80045, USA;Biology Department, University of Texas Arlington, Arlington, TX 76016, USA;Environmental Futures Centre, Griffith University, Nathan QLD 4111, Australia;Department of Evolutionary Biology, Uppsala University, Norbyvagen 18D, SE-752 36 Uppsala, Sweden;Centre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, Øster Voldgade 5-7, 1350 Copenhagen, Denmark;Current address: Bioinformatics Research Centre (BiRC), Aarhus University, C.F.Møllers Allé 8, 8000 Aarhus C, Denmark;Department of Medicine, University of Hong Kong, Hong Kong, Hong Kong;School of Biological Sciences, University of Sydney, Sydney, NSW 2006, Australia;Department of Genomics and Genetics, The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush Campus Midlothian, Edinburgh EH25 9RG, UK
关键词: Antarctica;    Adaptation;    Evolution;    Avian genomics;    Penguins;   
Others  :  1118570
DOI  :  10.1186/2047-217X-3-27
 received in 2014-09-01, accepted in 2014-11-06,  发布年份 2014
PDF
【 摘 要 】

Background

Penguins are flightless aquatic birds widely distributed in the Southern Hemisphere. The distinctive morphological and physiological features of penguins allow them to live an aquatic life, and some of them have successfully adapted to the hostile environments in Antarctica. To study the phylogenetic and population history of penguins and the molecular basis of their adaptations to Antarctica, we sequenced the genomes of the two Antarctic dwelling penguin species, the Adélie penguin [Pygoscelis adeliae] and emperor penguin [Aptenodytes forsteri].

Results

Phylogenetic dating suggests that early penguins arose ~60 million years ago, coinciding with a period of global warming. Analysis of effective population sizes reveals that the two penguin species experienced population expansions from ~1 million years ago to ~100 thousand years ago, but responded differently to the climatic cooling of the last glacial period. Comparative genomic analyses with other available avian genomes identified molecular changes in genes related to epidermal structure, phototransduction, lipid metabolism, and forelimb morphology.

Conclusions

Our sequencing and initial analyses of the first two penguin genomes provide insights into the timing of penguin origin, fluctuations in effective population sizes of the two penguin species over the past 10 million years, and the potential associations between these biological patterns and global climate change. The molecular changes compared with other avian genomes reflect both shared and diverse adaptations of the two penguin species to the Antarctic environment.

【 授权许可】

   
2014 Li et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150206040439840.pdf 901KB PDF download
Figure 3. 95KB Image download
Figure 2. 75KB Image download
Figure 1. 61KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

【 参考文献 】
  • [1]Gill F, Donsker D: IOC World Bird List (v 4.1). 2014.
  • [2]Ksepka DT, Ando T: Penguins past, present, and future: trends in the evolution of the Sphenisciformes. In Living Dinosaurs. Edited by Dyke G, Kaiser G. Oxford: Wiley; 2011:155-186.
  • [3]Watson M: Report on the Anatomy of the Spheniscidae Collected by HMS Challenger, During the Years 1873–1876. Edinburgh: Neill and Company; 1883.
  • [4]Taylor JRE: Thermal insulation of the down and feathers of pygoscelid penguin chicks and the unique properties of penguin feathers. Auk 1986, 103:160-168.
  • [5]Sivak JG: The role of a flat cornea in the amphibious behaviour of the blackfoot penguin (Spheniscus demersus). Can J Zool 1976, 54:1341-1345.
  • [6]Sivak JG, Millodot M: Optical performance of the penguin eye in air and water. J Comp Physiol 1977, 119:241-247.
  • [7]Bowmaker JK, Martin GR: Visual pigments and oil droplets in the penguin, Spheniscus humboldti. J Comp Physiol A 1985, 156:71-77.
  • [8]Meister W: Histological structure of the long bones of penguins. Anat Rec 1962, 143:377-387.
  • [9]Raikow RJ, Bicanovsky L, Bledsoe AH: Forelimb joint mobility and the evolution of wing-propelled diving in birds. Auk 1988, 446-451.
  • [10]Schreiweis DO: A comparative study of the appendicular musculature of penguins (Aves: Sphenisciformes). Smithsonian Contrib Zool 1982, 341:1-46.
  • [11]Wilson GJ: Distribution and abundance of Antarctic and sub-Antarctic penguins: a synthesis of current knowledge. Cambridge: SCAR; 1983.
  • [12]Woehler EJ, Croxall JP: The status and trends of Antarctic and sub-Antarctic seabirds. Marine Ornithology 1997, 25:43-66.
  • [13]Goldsmith R, Sladen WJ: Temperature regulation of some antarctic penguins. J Physiol 1961, 157:251-262.
  • [14]Frost PGH, Siegfried WR, Greenwood PJ: Arterio-venous heat exchange systems in the Jackass penguin Spheniscus demersus. J Zool 1975, 175:231-241.
  • [15]Thomas DB, Fordyce RE: The heterothermic loophole exploited by penguins. Aust J Zool 2008, 55:317-321.
  • [16]Groscolas R: Metabolic adaptations to fasting in emperor and king penguins. In Penguin Biology. Edited by Davis LS, Darby JT. San Diego: Academic; 1990:269-296.
  • [17]Cherel Y, Gilles J, Handrich Y, Le Maho Y: Nutrient reserve dynamics and energetics during long-term fasting in the king penguin (Aptenodytes patagonicus). J Zool 1994, 234:1-12.
  • [18]Groscolas R, Robin JP: Long-term fasting and re-feeding in penguins. Comp Biochem Physiol A Mol Integr Physiol 2001, 128:645-655.
  • [19]Barbraud C, Weimerskirch H: Emperor penguins and climate change. Nature 2001, 411:183-186.
  • [20]Ainley DG: The Adélie Penguin: Bellwether of Climate Change. New York: Columbia University Press; 2002.
  • [21]Forcada J, Trathan PN: Penguin responses to climate change in the Southern Ocean. Glob Chang Biol 2009, 15:1618-1630.
  • [22]Jenouvrier S: Impacts of climate change on avian populations. Glob Chang Biol 2013, 19:2036-2057.
  • [23]Zhang G, Li C, Li Q, Li B, Larkin DM, Lee C, Storz JF, Antunes A, Greenwold MJ, Meredith RW, Ödeen A, Cui J, Zhou Q, Xu L, Pan H, Wang Z, Jin L, Zhang P, Hu H, Yang W, Hu J, Xiao J, Yang Z, Liu Y, Xie Q, Yu H, Lian J, Wen P, Zhang F, Li H, et al.: Comparative genomics reveal insights into avian genome evolution and adaptation. Science 2014. in press
  • [24]Jarvis ED, Mirarab S, Aberer AJ, Li B, Houde P, Li C, Ho SYW, Faircloth BC, Nabholz B, Howard JT, Suh A, Weber CC, Fonseca RR, Li J, Zhang F, Li H, Zhou L, Narula N, Liu L, Ganapathy G, Boussau B, Bayzid MS, Zavidovych V, Subramanian S, Gabaldón T, Gutiérrez SC, Huerta-Cepas J, Rekepalli B, Munch K, Schierup M, et al.: Whole genome analyses resolve the early branches to the tree of life of modern birds. Science 2014. in press
  • [25]Cai Q, Qian X, Lang Y, Luo Y, Xu J, Pan S, Hui Y, Gou C, Cai Y, Hao M, Zhao J, Wang S, Wang Z, Zhang X, He R, Liu J, Luo L, Li Y, Wang J: Genome sequence of ground tit Pseudopodoces humilis and its adaptation to high altitude. Genome Biol 2013, 14:R29. BioMed Central Full Text
  • [26]Zachos J, Pagani M, Sloan L, Thomas E, Billups K: Trends, rhythms, and aberrations in global climate 65 Ma to present. Science 2001, 292:686-693.
  • [27]Katz ME, Pak DK, Dickens GR, Miller KG: The source and fate of massive carbon input during the latest paleocene thermal maximum. Science 1999, 286:1531-1533.
  • [28]Sluijs A, Schouten S, Pagani M, Woltering M, Brinkhuis H, Sinninghe Damste JS, Dickens GR, Huber M, Reichart GJ, Stein R, Matthiessen J, Lourens LJ, Pedentchouk N, Backman J, Moran K: Subtropical Arctic Ocean temperatures during the Palaeocene/Eocene thermal maximum. Nature 2006, 441:610-613.
  • [29]Subramanian S, Beans-Picon G, Swaminathan SK, Millar CD, Lambert DM: Evidence for a recent origin of penguins. Biol Lett 2013, 9:20130748.
  • [30]Li H, Durbin R: Inference of human population history from individual whole-genome sequences. Nature 2011, 475:493-496.
  • [31]Ritchie PA, Millar CD, Gibb GC, Baroni C, Lambert DM: Ancient DNA enables timing of the Pleistocene origin and Holocene expansion of two Adélie penguin lineages in Antarctica. Mol Biol Evol 2004, 21:240-248.
  • [32]Jenouvrier S, Barbraud C, Weimerskirch H: Sea ice affects the population dynamics of Adélie penguins in Terre Adélie. Polar Biology 2006, 29:413-423.
  • [33]Lisiecki LE, Raymo ME: A Pliocene-Pleistocene stack of 57 globally distributed benthic δ18O records. Paleoceanography 2005, 20:PA1003.
  • [34]Thatje S, Hillenbrand CD, Mackensen A, Larter R: Life hung by a thread: endurance of Antarctic fauna in glacial periods. Ecology 2008, 89:682-692.
  • [35]Clark PU, Dyke AS, Shakun JD, Carlson AE, Clark J, Wohlfarth B, Mitrovica JX, Hostetler SW, McCabe AM: The last glacial maximum. Science 2009, 325:710-714.
  • [36]Spearman RIC: The epidermis and feather follicles of the king penguin (Aptenodytes patagonica) (Aves). Zeitschrift für Morphologie der Tiere 1969, 64:361-372.
  • [37]Dawson C, Vincent JFV, Jeronimidis G, Rice G, Forshaw P: Heat transfer through penguin feathers. J Theor Biol 1999, 199:291-295.
  • [38]Greenwold MJ, Bao W, Jarvis ED, Hu H, Li C, Gilbert MTP, Zhang G, Sawyer RH: Dynamic evolution of the alpha (α) and beta (β) keratins has accompanied integument diversification and the adaptation of birds into novel lifestyles. BMC Evol Biol 2014. in press
  • [39]Greenwold MJ, Sawyer RH: Molecular evolution and expression of archosaurian beta-keratins: diversification and expansion of archosaurian beta-keratins and the origin of feather beta-keratins. J Exp Zool B Mol Dev Evol 2013, 320:393-405.
  • [40]Vanhoutteghem A, Londero T, Ghinea N, Djian P: Serial cultivation of chicken keratinocytes, a composite cell type that accumulates lipids and synthesizes a novel beta-keratin. Differentiation 2004, 72:123-137.
  • [41]Ruhrberg C, Hajibagheri MA, Simon M, Dooley TP, Watt FM: Envoplakin, a novel precursor of the cornified envelope that has homology to desmoplakin. J Cell Biol 1996, 134:715-729.
  • [42]Yang Z: PAML 4: phylogenetic analysis by maximum likelihood. Mol Biol Evol 2007, 24:1586-1591.
  • [43]Rickman L, Simrak D, Stevens HP, Hunt DM, King IA, Bryant SP, Eady RA, Leigh IM, Arnemann J, Magee AI, Kelsell DP, Buxton RS: N-terminal deletion in a desmosomal cadherin causes the autosomal dominant skin disease striate palmoplantar keratoderma. Hum Mol Genet 1999, 8:971-976.
  • [44]Okano T, Yoshizawa T, Fukada Y: Pinopsin is a chicken pineal photoreceptive molecule. Nature 1994, 372:94-97.
  • [45]Piezzi RS, Gutierrez LS: Electron microscopic studies on the pineal organ of the Antarctic penguin (Pygoscelis papua). Cell Tissue Res 1975, 164:559-570.
  • [46]Chen TY, Peng YW, Dhallan RS, Ahamed B, Reed RR, Yau KW: A new subunit of the cyclic nucleotide-gated cation channel in retinal rods. Nature 1993, 362:764-767.
  • [47]Alten M: Penguin parenting: Adelie penguins reunite for their annual breeding rituals. Animals 1997, 130:20-23.
  • [48]Williams TD: The Penguins; Spheniscidae. Oxford: Oxford University Press; 1995.
  • [49]Choi Y, Sims GE, Murphy S, Miller JR, Chan AP: Predicting the functional effect of amino acid substitutions and indels. PLoS One 2012, 7:e46688.
  • [50]Ruiz-Perez VL, Tompson SW, Blair HJ, Espinoza-Valdez C, Lapunzina P, Silva EO, Hamel B, Gibbs JL, Young ID, Wright MJ, Goodship JA: Mutations in two nonhomologous genes in a head-to-head configuration cause Ellis-van Creveld syndrome. Am J Hum Genet 2003, 72:728-732.
  • [51]Liu S, Lorenzen ED, Fumagalli M, Li B, Harris K, Xiong Z, Zhou L, Korneliussen TS, Somel M, Babbitt C, Wray G, Li J, He W, Wang Z, Fu W, Xiang X, Morgan CC, Doherty A, O'Connell MJ, McInerney JO, Born EW, Dalen L, Dietz R, Orlando L, Sonne C, Zhang G, Nielsen R, Willerslev E, Wang J: Population genomics reveal recent speciation and rapid evolutionary adaptation in polar bears. Cell 2014, 157:785-794.
  • [52]Ge RL, Cai Q, Shen YY, San A, Ma L, Zhang Y, Yi X, Chen Y, Yang L, Huang Y, He R, Hui Y, Hao M, Li Y, Wang B, Ou X, Xu J, Zhang Y, Wu K, Geng C, Zhou W, Zhou T, Irwin DM, Yang Y, Ying L, Bao H, Kim J, Larkin DM, Ma J, Lewin HA, et al.: Draft genome sequence of the Tibetan antelope. Nat Commun 2013, 4:1858.
  • [53]Kelley JL, Peyton JT, Fiston-Lavier AS, Teets NM, Yee MC, Johnston JS, Bustamante CD, Lee RE, Denlinger DL: Compact genome of the Antarctic midge is likely an adaptation to an extreme environment. Nat Commun 2014, 5:4611.
  • [54]Li R, Zhu H, Ruan J, Qian W, Fang X, Shi Z, Li Y, Li S, Shan G, Kristiansen K, Yang H, Wang J: De novo assembly of human genomes with massively parallel short read sequencing. Genome Res 2010, 20:265-272.
  • [55]Parra G, Bradnam K, Korf I: CEGMA: a pipeline to accurately annotate core genes in eukaryotic genomes. Bioinformatics 2007, 23:1061-1067.
  • [56]Hillier LW, Miller W, Birney E, Warren W, Hardison RC, Ponting CP, Bork P, Burt DW, Groenen MAM, Delany ME, Dodgson JB, Map G, Assembly SA, Chinwalla AT, Cliften PF, Clifton SW, Delehaunty KD, Fronick C, Fulton RS, Graves TA, Kremitzki C, Layman D, Magrini V, McPherson JD, Miner TL, Minx P, Nash WE, Nhan MN, Nelson JO, Oddy LG, et al.: Sequence and comparative analysis of the chicken genome provide unique perspectives on vertebrate evolution. Nature 2004, 432:695-716.
  • [57]Warren WC, Clayton DF, Ellegren H, Arnold AP, Hillier LW, Kunstner A, Searle S, White S, Vilella AJ, Fairley S, Heger A, Kong L, Ponting CP, Jarvis ED, Mello CV, Minx P, Lovell P, Velho TA, Ferris M, Balakrishnan CN, Sinha S, Blatti C, London SE, Li Y, Lin YC, George J, Sweedler J, Southey B, Gunaratne P, Watson M, et al.: The genome of a songbird. Nature 2010, 464:757-762.
  • [58]Dalloul RA, Long JA, Zimin AV, Aslam L, Beal K, Blomberg LA, Bouffard P, Burt DW, Crasta O, Crooijmans RPMA, Cooper K, Coulombe RA, De S, Delany ME, Dodgson JB, Dong JJ, Evans C, Frederickson KM, Flicek P, Florea L, Folkerts O, Groenen MAM, Harkins TT, Herrero J, Hoffmann S, Megens H-J, Jiang A, de Jong P, Kaiser P, Kim H, et al.: Multi-platform next-generation sequencing of the domestic turkey (Meleagris gallopavo): genome assembly and analysis. PLoS Biol 2010, 8:e1000475.
  • [59]Harris RS: Improved Pairwise Alignment of Genomic DNA. Pennsylvania State University; 2007. PhD thesis
  • [60]Kent WJ, Baertsch R, Hinrichs A, Miller W, Haussler D: Evolution's cauldron: Duplication, deletion, and rearrangement in the mouse and human genomes. Proc Natl Acad Sci U S A 2003, 100:11484-11489.
  • [61]Zhan X, Pan S, Wang J, Dixon A, He J, Muller MG, Ni P, Hu L, Liu Y, Hou H, Chen Y, Xia J, Luo Q, Xu P, Chen Y, Liao S, Cao C, Gao S, Wang Z, Yue Z, Li G, Yin Y, Fox NC, Wang J, Bruford MW: Peregrine and saker falcon genome sequences provide insights into evolution of a predatory lifestyle. Nat Genet 2013, 45:563-566.
  • [62]Chen N: Using RepeatMasker to identify repetitive elements in genomic sequences. Curr Protoc Bioinformatics 2004, 25:4.10:4.10.1-4.10.14.
  • [63]Jurka J, Kapitonov VV, Pavlicek A, Klonowski P, Kohany O, Walichiewicz J: Repbase Update, a database of eukaryotic repetitive elements. Cytogenet Genome Res 2005, 110:462-467.
  • [64]Smit AFA, Hubley R: RepeatModeler Open-1.0. 2008. http://www.repeatmasker.org webcite
  • [65]Benson G: Tandem repeats finder: a program to analyze DNA sequences. Nucleic Acids Res 1999, 27:573-580.
  • [66]Lowe TM, Eddy SR: tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence. Nucleic Acids Res 1997, 25:955-964.
  • [67]Nawrocki EP, Kolbe DL, Eddy SR: Infernal 1.0: inference of RNA alignments. Bioinformatics 2009, 25:1335-1337.
  • [68]Gardner PP, Daub J, Tate JG, Nawrocki EP, Kolbe DL, Lindgreen S, Wilkinson AC, Finn RD, Griffiths-Jones S, Eddy SR, Bateman A: Rfam: updates to the RNA families database. Nucleic Acids Res 2009, 37:D136-140.
  • [69]Griffiths-Jones S, Saini HK, van Dongen S, Enright AJ: miRBase: tools for microRNA genomics. Nucleic Acids Res 2008, 36:D154-158.
  • [70]Altschul SF, Gish W: Local alignment statistics. Methods Enzymol 1996, 266:460-480.
  • [71]Bonnet E, Wuyts J, Rouze P, Van de Peer Y: Evidence that microRNA precursors, unlike other non-coding RNAs, have lower folding free energies than random sequences. Bioinformatics 2004, 20:2911-2917.
  • [72]Janssen S, Giegerich R: Faster computation of exact RNA shape probabilities. Bioinformatics 2010, 26:632-639.
  • [73]Pearson WR: Flexible sequence similarity searching with the FASTA3 program package. Methods Mol Biol 2000, 132:185-219.
  • [74]Notredame C: Computing multiple sequence/structure alignments with the T-coffee package. Curr Protoc Bioinformatics 2010, 4:3.8:3.8.1-3.8.28.
  • [75]Li R, Yu C, Li Y, Lam TW, Yiu SM, Kristiansen K, Wang J: SOAP2: an improved ultrafast tool for short read alignment. Bioinformatics 2009, 25:1966-1967.
  • [76]Li R, Li Y, Fang X, Yang H, Wang J, Kristiansen K, Wang J: SNP detection for massively parallel whole-genome resequencing. Genome Res 2009, 19:1124-1132.
  • [77]Visser K, Thunell R, Stott L: Magnitude and timing of temperature change in the Indo-Pacific warm pool during deglaciation. Nature 2003, 421:152-155.
  • [78]Ruan J, Li H, Chen Z, Coghlan A, Coin LJ, Guo Y, Heriche JK, Hu Y, Kristiansen K, Li R, Liu T, Moses A, Qin J, Vang S, Vilella AJ, Ureta-Vidal A, Bolund L, Wang J, Durbin R: TreeFam: 2008 Update. Nucleic Acids Res 2008, 36:D735-740.
  • [79]De Bie T, Cristianini N, Demuth JP, Hahn MW: CAFE: a computational tool for the study of gene family evolution. Bioinformatics 2006, 22:1269-1271.
  • [80]Greenwold MJ, Sawyer RH: Genomic organization and molecular phylogenies of the beta (beta) keratin multigene family in the chicken (Gallus gallus) and zebra finch (Taeniopygia guttata): implications for feather evolution. BMC Evol Biol 2010, 10:148. BioMed Central Full Text
  • [81]Li YI, Kong L, Ponting CP, Haerty W: Rapid evolution of Beta-keratin genes contribute to phenotypic differences that distinguish turtles and birds from other reptiles. Genome Biol Evol 2013, 5:923-933.
  • [82]O'Guin WM, Sawyer RH: Avian scale development: VIII. Relationships between morphogenetic and biosynthetic differentiation. Dev Biol 1982, 89:485-492.
  • [83]Sawyer RH, Knapp LW, O’Guin WM: Epidermis, dermis and appendages. In Biology of the Integument. Springer; 1986:194-238.
  • [84]Loytynoja A, Goldman N: Phylogeny-aware gap placement prevents errors in sequence alignment and evolutionary analysis. Science 2008, 320:1632-1635.
  • [85]Blake JA, Bult CJ, Kadin JA, Richardson JE, Eppig JT, Mouse Genome Database G: The Mouse Genome Database (MGD): premier model organism resource for mammalian genomics and genetics. Nucleic Acids Res 2011, 39:D842-848.
  • [86]Zhang G, Lambert D, Wang J: Genomic data from Adelie penguin (Pygoscelis adeliae). GigaScience 2011. http://dx.doi.org/10.5524/100006 webcite
  • [87]Zhang G, Lambert D, Wang J: Genomic data from the Emperor penguin (Aptenodytes forsteri). GigaScience 2011. http://dx.doi.org/10.5524/100005 webcite
  文献评价指标  
  下载次数:39次 浏览次数:20次