期刊论文详细信息
Journal of Cardiothoracic Surgery
The effects of PPARγ agonist rosiglitazone on neointimal hyperplasia in rabbit carotid anastomosis model
Eyup Hazan2  Alper Bagrıyanık1  Soner Atmaca1  Buket Reel3  Mehmet Guzeloglu2 
[1] Department of Histology and Embriology, Faculty of Medicine, Dokuz Eylul University, Izmir, Turkey;Department of Cardiovascular Surgery, Faculty of Medicine, İzmir University, Izmir, Turkey;Department of Pharmacology, Faculty of Pharmacy, Ege University, Izmir, Turkey
关键词: Rabbit;    Matrix metalloproteinases (MMPs);    Rosiglitazone;    Neointima;   
Others  :  1153125
DOI  :  10.1186/1749-8090-7-57
 received in 2012-02-22, accepted in 2012-06-08,  发布年份 2012
PDF
【 摘 要 】

Background

Neointimal hyperplasia involving smooth muscle cell (SMC) proliferation, migration and extracellular matrix (ECM) degradation is an important component of atherosclerosis. It develops as a response to vascular injury after balloon angioplasty and vascular graft placement. Matrix metalloproteinases (MMPs) induce SMC proliferation, migration and contribute to intimal hyperplasia by degrading ECM. PPARγ agonists inhibit SMC proliferation, migration and lesion formation. In this study, we aimed to investigate the effects of PPARγ agonist rosiglitazone on neointimal hyperplasia and gelatinase (MMP-2 and MMP-9) expressions in rabbit carotid anastomosis model.

Methods

New Zealand white rabbits (n = 13, 2.7–3.2 kg) were divided into placebo and treatment groups. Right carotid artery (CA) was transected and both ends were anastomosed. Treatment group (n = 6) received rosiglitazone (3 mg/kg/day/p.o.) and placebo group (n = 7) received PBS (phosphate buffered saline, 2.5 ml/kg/day/p.o.) for 4 weeks postoperatively. After the sacrification, right and left CAs were isolated. Morphometric analyses and immunohistochemical examinations for gelatinases were performed.

Results

Intimal area (0.055 ± 0.005 control vs 0.291 ± 0.020 μm2 anastomosed, p < 0,05) and index (0.117 ± 0.002 control vs 0.574 ± 0.013 anastomosed, p < 0,01) significantly increased in anastomosed arteries compared to control arteries from placebo group. However, in rosiglitazone-treated group, intimal area (0.291 ± 0.020 PBS vs 0.143 ± 0.027 rosiglitazone, p < 0,05) and index (0.574 ± 0.013 PBS vs 0.263 ± 0.0078 rosiglitazone, p < 0,01) significantly decreased. Furthermore, gelatinase immunopositivity was found to have significantly increased in anastomosed arteries from placebo group and decreased with rosiglitazone treatment.

Conclusions

These results suggest that rosiglitazone may prevent neointimal hyperplasia, which is the most important factor involved in late graft failure, by inhibiting gelatinase enzyme expression.

【 授权许可】

   
2012 Guzeloglu et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150407035823324.pdf 2005KB PDF download
Figure 6. 146KB Image download
Figure 5. 134KB Image download
Figure 4. 128KB Image download
Figure 3. 40KB Image download
Figure 2. 36KB Image download
Figure 1. 152KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

【 参考文献 】
  • [1]Libby P, Tanaka H: The molecular bases of restenosis. Prog Cardiovasc Dis 1997, 40(2):97-106.
  • [2]O' Brien ER, Ma X, Simard T, Pourdjabbar A, Hibbert B: Pathogenesis of Neointima formation following vascular injury. Cardiovasc Hematol Disord Drug Targets 2011, 11(1):30-39.
  • [3]Newby AC: Matrix metalloproteinases regulate migration, proliferation, and death of vascular smooth muscle cells by degrading matrix and non-matrix substrates. Cardiovasc Res 2006, 69(3):614-624.
  • [4]Ricote M, Huang J, Fajas L, Li A, Welch J, Najib J, et al.: Expression of the peroxisome proliferator-activated receptor gamma (PPARgamma) in human atherosclerosis and regulation in macrophages by colony stimulating factors and oxidized low density lipoprotein. Proc Natl Acad Sci USA 1998, 95(13):7614-7619.
  • [5]Law RE, Goetze S, Xi XP, Jackson S, Kawano Y, Demer L, et al.: Expression and function of PPARgamma in rat and human vascular smooth muscle cells. Circulation 2000, 101(11):1311-1318.
  • [6]van Bilsen M, van Nieuwenhoven FA: PPARs as therapeutic targets in cardiovascular disease. Expert Opin Ther Targets 2010, 14(10):1029-1045.
  • [7]Schiffrin EL: Peroxisome proliferator-activated receptors and cardiovascular remodeling. Am J Physiol Heart Circ Physiol 2005, 288(3):H1037-H1043.
  • [8]Yiqin Y, Meilin X, Jie X, Keping Z: Aspirin inhibits MMP-2 and MMP-9 expression and activity through PPARalpha/gamma and TIMP-1-mediated mechanisms in cultured mouse celiac macrophages. Inflammation 2009, 32(4):233-241.
  • [9]Chang K, Francis SA, Aikawa E, Figueiredo JL, Kohler RH, McCarthy JR, et al.: Pioglitazone suppresses inflammation in vivo in murine carotid atherosclerosis: novel detection by dual-target fluorescence molecular imaging. Arterioscler Thromb Vasc Biol 2010, 30(10):1933-1939.
  • [10]Meredith D, Panchatcharam M, Miriyala S, Tsai YS, Morris AJ, Maeda N, et al.: Dominant-negative loss of PPARgamma function enhances smooth muscle cell proliferation, migration, and vascular remodeling. Arterioscler Thromb Vasc Biol 2009, 29(4):465-471.
  • [11]Robinson E, Grieve DJ: Significance of peroxisome proliferator-activated receptors in the cardiovascular system in health and disease. Pharmacol Ther 2009, 122(3):246-263.
  • [12]Zahradka P, Wright B, Fuerst M, Yurkova N, Molnar K, Taylor CG: Peroxisome proliferator-activated receptor alpha and gamma ligands differentially affect smooth muscle cell proliferation and migration. J Pharmacol Exp Ther 2006, 317(2):651-659.
  • [13]Lee CS, Kwon YW, Yang HM, Kim SH, Kim TY, Hur J, et al.: New mechanism of rosiglitazone to reduce neointimal hyperplasia: activation of glycogen synthase kinase-3beta followed by inhibition of MMP-9. Arterioscler Thromb Vasc Biol 2009, 29(4):472-479.
  • [14]Choi D, Kim SK, Choi SH, Ko YG, Ahn CW, Jang Y, et al.: Preventative effects of rosiglitazone on restenosis after coronary stent implantation in patients with type 2 diabetes. Diabetes Care 2004, 27:2654-2660.
  • [15]Fang CC, Ng Jao, YT Yi-Chen, Yu CL, Chen CL, Wang SP: Angiographic and clinical outcomes of rosiglitazone in patients with type 2 diabetes mellitus after percutaneous coronary interventions: a single center experience. Angiology 2007, 58(5):523-534.
  • [16]Alessi A, França Neto OR, Brofman PR, Prim C, Noronha L, Silva RF, et al.: Use of rosiglitazone before and after vascular injury in hypercholesterolemic rabbits: Assessment of neointimal formation. Thromb J 2008, 6:12. BioMed Central Full Text
  • [17]Freire Cerqueira N, Hussni CA, Bonetti Yoshida W, Swain Müller S, Sequeira JL, Rodrigues AC, et al.: Effect of diclofenac sodium on the healing process of end-to-end anastomosis in carotid arteries of rabbits. Histopathological and biomechanical studies. Int Angiol 2003, 22(4):431-437.
  • [18]De Meyer GR, Bult H: Mechanisms of neointima formation -lessons from experimental models. Vasc Med 1997, 2(3):179-189.
  • [19]Jackson MR, Belott TP, Dickason T, Kaiser WJ, Modrall JG, Valentine RJ, et al.: The consequences of a failed femoropopliteal bypass grafting: comparison of saphenous vein and PTFE grafts. J Vasc Surg 2000, 32(3):498-504. 504–5
  • [20]Güzeloğlu M, Gül M, Reel B, Yürekli I, Aykut K, Hazan E: The effects of zoledronic acid on neointimal hyperplasia: a rabbit carotid anastomosis model. Anadolu Kardiyol Derg 2011, 11(2):93-100.
  • [21]Sluijter JP, de Kleijn DP, Pasterkamp G: Vascular remodeling and protease inhibition–bench to bedside. Cardiovasc Res 2006, 69(3):595-603.
  • [22]Mitchell RN, Libby P: Vascular remodeling in transplant vasculopathy. Circ Res 2007, 100(7):967-978.
  • [23]Wong AP, Nili N, Jackson ZS, Qiang B, Leong-Poi H, Jaffe R, et al.: Expansive remodeling in venous bypass grafts: novel implications for vein graft disease. Atherosclerosis 2008, 196(2):580-589.
  • [24]Phillips JW, Barringhaus KG, Sanders JM, Yang Z, Chen M, Hesselbacher S, et al.: Rosiglitazone reduces the accelerated neointima formation after arterial injury in a mouse injury model of type 2 diabetes. Circulation 2003, 108:1994-1999.
  • [25]Alessi A, França Neto OR, Prim C, Silva RF, Noronha L, Brofman PR, et al.: Rosiglitazone and vascular injury in hypercholesterolemic rabbits: neointimal formation assessment. Arq Bras Cardiol 2010, 95(3):283-288.
  • [26]Rinaldi B, Pieri L, Donniacuo M, Cappetta D, Capuano A, Domenici L, et al.: Rosiglitazone reduces the inflammatory response in a model of vascular injury in rats. Shock 2009, 32(6):638-644.
  • [27]Desouza CV, Murthy SN, Diez J, Dunne B, Matta AS, Fonseca VA, et al.: Differential effects of peroxisome proliferator activator receptor-alpha and gamma ligands on intimal hyperplasia after balloon catheter-induced vascular injury in Zucker rats. J Cardiovasc Pharmacol Ther 2003, 8:297-305.
  • [28]Salomone S: Pleiotropic effects of glitazones: a double edge sword? Front Pharmacol 2011, 2(14):1-6.
  • [29]Galis ZS, Johnson C, Godin D, Magid R, Shipley JM, Senior RM, et al.: Targeted disruption of the matrix metalloproteinase-9 gene impairs smooth muscle cell migration and geometrical arterial remodeling. Circ Res 2002, 91(9):852-859.
  • [30]Newby AC: Dual role of matrix metalloproteinases (matrixins) in intimal thickening and atherosclerotic plaque rupture. Physiol Rev 2005, 85(1):1-31.
  • [31]Johnson C, Galis ZS: Matrix metalloproteinase-2 and −9 differentially regulate smooth muscle cell migration and cell-mediated collagen organization. Arterioscler Thromb Vasc Biol 2004, 24(1):54-60.
  • [32]Cho A, Reidy MA: Matrix metalloproteinase-9 is necessary for the regulation of smooth muscle cell replication and migration after arterial injury. Circ Res 2002, 91(9):845-851.
  • [33]Kuzuya M, Kanda S, Sasaki T, Tamaya-Mori N, Cheng XW, Itoh T, et al.: Deficiency of gelatinase a suppresses smooth muscle cell invasion and development of experimental intimal hyperplasia. Circulation 2003, 108(11):1375-1381.
  • [34]Zou Y, Qi Y, Roztocil E, Davies MG: Patterns of gelatinase activation induced by injury in the murine femoral artery. J Surg Res 2009, 154(1):135-142.
  • [35]Reel B, Oktay G, Ozkal S, Islekel H, Ozer E, Ozsarlak-Sozer G, et al.: MMP-2 and MMP-9 alteration in response to collaring in rabbits: the effects of endothelin receptor antagonism. J Cardiovasc Pharmacol Ther 2009, 14(4):292-301.
  • [36]Kranzhöfer A, Baker AH, George SJ, Newby AC: Expression of tissue inhibitor of metalloproteinase-1, -2, and −3 during neointima formation in organ cultures of human saphenous vein. Arterioscler Thromb Vasc Biol 1999, 19(2):255-265.
  • [37]Chang W, Lim S, Song H, Song BW, Kim HJ, Cha MJ, et al.: Cordycepin inhibits vascular smooth muscle cell proliferation. Eur J Pharmacol 2008, 597(1–3):64-69.
  • [38]Bendeck MP, Zempo N, Clowes AW, Galardy RE, Reidy MA: Smooth muscle cell migration and matrix metalloproteinase expression after arterial injury in the rat. Circ Res 1994, 75(3):539-545.
  • [39]Forough R, Koyama N, Hasenstab D, Lea H, Clowes M, Nikkari ST, et al.: Overexpression of tissue inhibitor of matrix metalloproteinase-1 inhibits vascular smooth muscle cell functions in vitro and in vivo. Circ Res 1996, 79(4):812-820.
  • [40]Cheng L, Mantile G, Pauly R, Nater C, Felici A, Monticone R, et al.: Adenovirus-mediated gene transfer of the human tissue inhibitor of metalloproteinase-2 blocks vascular smooth muscle cell invasiveness in vitro and modulates neointimal development in vivo. Circulation 1998, 98(20):2195-2201.
  • [41]Reel B, Sala-Newby GB, Huang WC, Newby AC, et al.: Diverse patterns of cyclo-oxygenase-independent metalloproteinase gene regulation in human monocytes. Br J Pharmacol 2011.
  • [42]Wu X, Li L: Rosiglitazone suppresses lipopolysaccharide-induced matrix metalloproteinase-2 activity in rat aortic endothelial cells via Ras-MEK1/2 signaling. Int J Cardiol 2011. Epub ahead of print
  • [43]Ling HY, Hu B, Wang BX, Zu XY, Feng SD, Ou HS, et al.: Effects of rosiglitazone on the proliferation of vascular smooth muscle cell induced by high glucose. Cardiovasc Drugs Ther 2008, 22(6):453-460.
  • [44]Ferroni P, Basili S, Martini F, Cardarello CM, Ceci F, Di Franco M, et al.: Serum metalloproteinase 9 levels in patients with coronary artery disease: a novel marker of inflammation. J Investig Med 2003, 51(5):295-300.
  • [45]Marx N, Froehlich J, Siam L, Ittner J, Wierse G, Schmidt A, et al.: Antidiabetic PPAR gamma-activator rosiglitazone reduces MMP-9 serum levels in type 2 diabetic patients with coronary artery disease. Arterioscler Thromb Vasc Biol 2003, 23(2):283-288.
  • [46]Newby AC: Do metalloproteinases destabilize vulnerable atherosclerotic plaques? Curr Opin Lipidol 2006, 17(5):556-561.
  文献评价指标  
  下载次数:18次 浏览次数:21次