期刊论文详细信息
Cardiovascular Diabetology
Visceral adiposity is associated with altered myocardial glucose uptake measured by18FDG-PET in 346 subjects with normal glucose tolerance, prediabetes, and type 2 diabetes
Mijin Yun5  Eun Seok Kang3  Hye Jin Wang4  Hye-jin Yoon2  Eugene Han2  Yong-ho Lee2  Kwang Joon Kim2  Kwanhyeong Jo5  Gyuri Kim1 
[1]Graduate School, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
[2]Division of Endocrinology and Metabolism, Department of Internal Medicine, Yonsei University College of Medicine, 50-1, Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
[3]Institute of Endocrine Research, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
[4]Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
[5]Department of Nuclear Medicine, Yonsei University College of Medicine, 50-1, Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
关键词: Insulin resistance;    Positron emission tomography;    Type 2 diabetes mellitus;    Myocardium;    Visceral fat;   
Others  :  1231863
DOI  :  10.1186/s12933-015-0310-4
 received in 2015-08-10, accepted in 2015-10-24,  发布年份 2015
PDF
【 摘 要 】

Background

The heart requires constant sources of energy mostly from free fatty acids (FFA) and glucose. The alteration in myocardial substrate metabolism occurs in the heart of diabetic patients, but its specific association with other metabolic variables remains unclear. We aimed to evaluate glucose uptake in hearts of subjects with normal glucose tolerance (NGT), prediabetes, and type 2 diabetes mellitus (T2DM) using [ 18 F]-fluorodeoxyglucose-positron emission tomography ( 18 FDG-PET) in association with visceral and subcutaneous adiposity, and metabolic laboratory parameters.

Methods

A total of 346 individuals (NGT, n = 76; prediabetes, n = 208; T2DM, n = 62) in a health promotion center of a tertiary hospital were enrolled. The fasting myocardial glucose uptake, and visceral and subcutaneous fat areas were evaluated using18 FDG-PET and abdominal computed tomography, respectively.

Results

Myocardial glucose uptake was significantly decreased in subjects with T2DM compared to the NGT or prediabetes groups (p for trend = 0.001). Multivariate linear regression analyses revealed that visceral fat area (β = −0.22, p = 0.018), fasting FFA (β = −0.39, p < 0.001), and uric acid levels (β = −0.21, p = 0.007) were independent determinants of myocardial glucose uptake. Multiple logistic analyses demonstrated that decreased myocardial glucose uptake (OR 2.32; 95 % CI 1.02–5.29, p = 0.045) and visceral fat area (OR 1.02, 95 % CI 1.01–1.03, p = 0.018) were associated with T2DM.

Conclusions

Our findings indicate visceral adiposity is strongly associated with the alteration of myocardial glucose uptake evaluated by18 FDG-PET, and its association further relates to T2DM.

【 授权许可】

   
2015 Kim et al.

【 预 览 】
附件列表
Files Size Format View
20151111033330446.pdf 1000KB PDF download
Fig.2. 21KB Image download
Fig.1. 30KB Image download
【 图 表 】

Fig.1.

Fig.2.

【 参考文献 】
  • [1]DeFronzo RA. Pathogenesis of type 2 diabetes mellitus. Med Clin North Am. 2004; 88(4):787-835, ix.
  • [2]Neeland IJ, Turer AT, Ayers CR, Powell-Wiley TM, Vega GL, Farzaneh-Far R et al.. Dysfunctional adiposity and the risk of prediabetes and type 2 diabetes in obese adults. JAMA. 2012; 308(11):1150-1159.
  • [3]Nolan CJ, Damm P, Prentki M. Type 2 diabetes across generations: from pathophysiology to prevention and management. Lancet. 2011; 378(9786):169-181.
  • [4]van den Brom CE, Bulte CS, Loer SA, Bouwman RA, Boer C. Diabetes, perioperative ischaemia and volatile anaesthetics: consequences of derangements in myocardial substrate metabolism. Cardiovasc Diabetol. 2013; 12:42. BioMed Central Full Text
  • [5]Carley AN, Severson DL. Fatty acid metabolism is enhanced in type 2 diabetic hearts. Biochim Biophys Acta. 2005; 1734(2):112-126.
  • [6]Masoud WG, Ussher JR, Wang W, Jaswal JS, Wagg CS, Dyck JR et al.. Failing mouse hearts utilize energy inefficiently and benefit from improved coupling of glycolysis and glucose oxidation. Cardiovasc Res. 2014; 101(1):30-38.
  • [7]Macheda ML, Rogers S, Best JD. Molecular and cellular regulation of glucose transporter (GLUT) proteins in cancer. J Cell Physiol. 2005; 202(3):654-662.
  • [8]Ozguven MA, Karacalioglu AO, Ince S, Emer MO. Altered biodistribution of FDG in patients with type-2 diabetes mellitus. Ann Nucl Med. 2014; 28(6):505-511.
  • [9]Knuuti MJ, Maki M, Yki-Jarvinen H, Voipio-Pulkki LM, Harkonen R, Haaparanta M et al.. The effect of insulin and FFA on myocardial glucose uptake. J Mol Cell Cardiol. 1995; 27(7):1359-1367.
  • [10]Boden G, Chen X, Ruiz J, White JV, Rossetti L. Mechanisms of fatty acid-induced inhibition of glucose uptake. J Clin Invest. 1994; 93(6):2438-2446.
  • [11]He ZX, Hedrick TD, Pratt CM, Verani MS, Aquino V, Roberts R et al.. Severity of coronary artery calcification by electron beam computed tomography predicts silent myocardial ischemia. Circulation. 2000; 101(3):244-251.
  • [12]Standards of medical care in diabetes–2014. Diabetes Care. 2014; 37 Suppl 1:S14-S80.
  • [13]Kim W, Kim KJ, Lee BW, Kang ES, Cha BS, Lee HC. The glycated albumin to glycated hemoglobin ratio might not be associated with carotid atherosclerosis in patients with type 1 diabetes. Diabetes Metab J. 2014; 38(6):456-463.
  • [14]Matthews DR, Hosker JP, Rudenski AS, Naylor BA, Treacher DF, Turner RC. Homeostasis model assessment: insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia. 1985; 28(7):412-419.
  • [15]Gastaldelli A, Cusi K, Pettiti M, Hardies J, Miyazaki Y, Berria R et al.. Relationship between hepatic/visceral fat and hepatic insulin resistance in nondiabetic and type 2 diabetic subjects. Gastroenterology. 2007; 133(2):496-506.
  • [16]Agatston AS, Janowitz WR, Hildner FJ, Zusmer NR, Viamonte M, Detrano R. Quantification of coronary artery calcium using ultrafast computed tomography. J Am Coll Cardiol. 1990; 15(4):827-832.
  • [17]Williams G, Kolodny GM. Retrospective study of coronary uptake of 18F-fluorodeoxyglucose in association with calcification and coronary artery disease: a preliminary study. Nucl Med Commun. 2009; 30(4):287-291.
  • [18]Boellaard R, Krak NC, Hoekstra OS, Lammertsma AA. Effects of noise, image resolution, and ROI definition on the accuracy of standard uptake values: a simulation study. J Nucl Med. 2004; 45(9):1519-1527.
  • [19]Paquet N, Albert A, Foidart J, Hustinx R. Within-patient variability of (18)F-FDG: standardized uptake values in normal tissues. J Nucl Med. 2004; 45(5):784-788.
  • [20]Wahl RL, Jacene H, Kasamon Y, Lodge MA. From RECIST to PERCIST: evolving Considerations for PET response criteria in solid tumors. J Nucl Med. 2009; 50 Suppl 1:122S-150S.
  • [21]Chang CJ, Wu CH, Chang CS, Yao WJ, Yang YC, Wu JS et al.. Low body mass index but high percent body fat in Taiwanese subjects: implications of obesity cutoffs. Int J Obes Relat Metab Disord. 2003; 27(2):253-259.
  • [22]Chondronikola M, Volpi E, Borsheim E, Porter C, Annamalai P, Enerback S et al.. Brown adipose tissue improves whole-body glucose homeostasis and insulin sensitivity in humans. Diabetes. 2014; 63(12):4089-4099.
  • [23]Bakker LE, Boon MR, van der Linden RA, Arias-Bouda LP, van Klinken JB, Smit F et al.. Brown adipose tissue volume in healthy lean south Asian adults compared with white Caucasians: a prospective, case-controlled observational study. Lancet Diabetes Endocrinol. 2014; 2(3):210-217.
  • [24]Liepinsh E, Makrecka M, Kuka J, Makarova E, Vilskersts R, Cirule H et al.. The heart is better protected against myocardial infarction in the fed state compared to the fasted state. Metabolism. 2014; 63(1):127-136.
  • [25]Yokoyama I, Yonekura K, Ohtake T, Kawamura H, Matsumoto A, Inoue Y et al.. Role of insulin resistance in heart and skeletal muscle F-18 fluorodeoxyglucose uptake in patients with non-insulin-dependent diabetes mellitus. J Nucl Cardiol. 2000; 7(3):242-248.
  • [26]Peterson LR, Gropler RJ. Radionuclide imaging of myocardial metabolism. Circ Cardiovasc Imaging. 2010; 3(2):211-222.
  • [27]Peterson LR, Soto PF, Herrero P, Mohammed BS, Avidan MS, Schechtman KB et al.. Impact of gender on the myocardial metabolic response to obesity. JACC Cardiovasc Imaging. 2008; 1(4):424-433.
  • [28]Medina-Urrutia A, Posadas-Romero C, Posadas-Sanchez R, Jorge-Galarza E, Villarreal-Molina T, Gonzalez-Salazar Mdel C et al.. Role of adiponectin and free fatty acids on the association between abdominal visceral fat and insulin resistance. Cardiovasc Diabetol. 2015; 14:20. BioMed Central Full Text
  • [29]Johnson AM, Olefsky JM. The origins and drivers of insulin resistance. Cell. 2013; 152(4):673-684.
  • [30]Kang S, Kyung C, Park JS, Kim S, Lee SP, Kim MK et al.. Subclinical vascular inflammation in subjects with normal weight obesity and its association with body fat: an 18 F-FDG-PET/CT study. Cardiovasc Diabetol. 2014; 13:70. BioMed Central Full Text
  • [31]Lautamaki R, Airaksinen KE, Seppanen M, Toikka J, Luotolahti M, Ball E et al.. Rosiglitazone improves myocardial glucose uptake in patients with type 2 diabetes and coronary artery disease: a 16-week randomized, double-blind, placebo-controlled study. Diabetes. 2005; 54(9):2787-2794.
  • [32]Randle PJ, Garland PB, Hales CN, Newsholme EA. The glucose fatty-acid cycle. Its role in insulin sensitivity and the metabolic disturbances of diabetes mellitus. Lancet. 1963; 1(7285):785-789.
  • [33]Hicks RJ, Herman WH, Kalff V, Molina E, Wolfe ER, Hutchins G et al.. Quantitative evaluation of regional substrate metabolism in the human heart by positron emission tomography. J Am Coll Cardiol. 1991; 18(1):101-111.
  • [34]Hasegawa S, Kusuoka H, Uehara T, Yamaguchi H, Hori M, Nishimura T. Glucose tolerance and myocardial F-18 fluorodeoxyglucose uptake in normal regions in coronary heart disease patients. Ann Nucl Med. 1998; 12(6):363-368.
  • [35]vom Dahl J, Herman WH, Hicks RJ, Ortiz-Alonso FJ, Lee KS, Allman KC et al.. Myocardial glucose uptake in patients with insulin-dependent diabetes mellitus assessed quantitatively by dynamic positron emission tomography. Circulation. 1993; 88(2):395-404.
  • [36]Aerni-Flessner L, Abi-Jaoude M, Koenig A, Payne M, Hruz PW. GLUT4, GLUT1, and GLUT8 are the dominant GLUT transcripts expressed in the murine left ventricle. Cardiovasc Diabetol. 2012; 11:63. BioMed Central Full Text
  • [37]Karim S, Adams DH, Lalor PF. Hepatic expression and cellular distribution of the glucose transporter family. World J Gastroenterol. 2012; 18(46):6771-6781.
  • [38]Hughey CC, Ma L, James FD, Bracy DP, Wang Z, Wasserman DH et al.. Mesenchymal stem cell transplantation for the infarcted heart: therapeutic potential for insulin resistance beyond the heart. Cardiovasc Diabetol. 2013; 12:128. BioMed Central Full Text
  • [39]Cook SA, Varela-Carver A, Mongillo M, Kleinert C, Khan MT, Leccisotti L et al.. Abnormal myocardial insulin signalling in type 2 diabetes and left-ventricular dysfunction. Eur Heart J. 2010; 31(1):100-111.
  • [40]Almdal T, Scharling H, Jensen JS, Vestergaard H. The independent effect of type 2 diabetes mellitus on ischemic heart disease, stroke, and death: a population-based study of 13,000 men and women with 20 years of follow-up. Arch Intern Med. 2004; 164(13):1422-1426.
  • [41]Li H, Liu Z, Wang J, Wong GT, Cheung CW, Zhang L et al.. Susceptibility to myocardial ischemia reperfusion injury at early stage of type 1 diabetes in rats. Cardiovasc Diabetol. 2013; 12:133. BioMed Central Full Text
  • [42]Hausenloy DJ, Whittington HJ, Wynne AM, Begum SS, Theodorou L, Riksen N et al.. Dipeptidyl peptidase-4 inhibitors and GLP-1 reduce myocardial infarct size in a glucose-dependent manner. Cardiovasc Diabetol. 2013; 12:154. BioMed Central Full Text
  • [43]Harmancey R, Vasquez HG, Guthrie PH, Taegtmeyer H. Decreased long-chain fatty acid oxidation impairs postischemic recovery of the insulin-resistant rat heart. Faseb J. 2013; 27(10):3966-3978.
  • [44]Boudina S, Abel ED. Diabetic cardiomyopathy, causes and effects. Rev Endocr Metab Disord. 2010; 11(1):31-39.
  • [45]Marin-Garcia J, Akhmedov AT. Epigenetics of the failing heart. Heart Fail Rev. 2015; 20(4):435-459.
  • [46]Bugyei-Twum A, Advani A, Advani SL, Zhang Y, Thai K, Kelly DJ et al.. High glucose induces Smad activation via the transcriptional coregulator p300 and contributes to cardiac fibrosis and hypertrophy. Cardiovasc Diabetol. 2014; 13:89. BioMed Central Full Text
  • [47]Chen WJ, Greulich S, van der Meer RW, Rijzewijk LJ, Lamb HJ, de Roos A et al.. Activin A is associated with impaired myocardial glucose metabolism and left ventricular remodeling in patients with uncomplicated type 2 diabetes. Cardiovasc Diabetol. 2013; 12:150. BioMed Central Full Text
  • [48]Duerr GD, Heinemann JC, Arnoldi V, Feisst A, Kley J, Ghanem A et al.. Cardiomyocyte specific peroxisome proliferator-activated receptor-alpha overexpression leads to irreversible damage in ischemic murine heart. Life Sci. 2014; 102(2):88-97.
  • [49]Ross S, Gerstein HC, Eikelboom J, Anand SS, Yusuf S, Pare G. Mendelian randomization analysis supports the causal role of dysglycaemia and diabetes in the risk of coronary artery disease. Eur Heart J. 2015; 36(23):1454-1462.
  • [50]Abele JT, Fung CI. Effect of hepatic steatosis on liver FDG uptake measured in mean standard uptake values. Radiology. 2010; 254(3):917-924.
  • [51]Kubota K, Watanabe H, Murata Y, Yukihiro M, Ito K, Morooka M et al.. Effects of blood glucose level on FDG uptake by liver: a FDG-PET/CT study. Nucl Med Biol. 2011; 38(3):347-351.
  文献评价指标  
  下载次数:11次 浏览次数:5次