Journal of Hematology & Oncology | |
Novel ALK inhibitors in clinical use and development | |
Delong Liu2  Shundong Cang5  Varun Mittal1  Muhammad Furqan4  Akintunde Akinleye3  Milaim Mustafa3  Chaitanya Iragavarapu3  | |
[1] Department of Medicine, Division of Hematology/Oncology, Albert Einstein Medical Center, Philadelphia 19141, PA, USA;Henan Cancer Hospital, Zhengzhou University, Zhengzhou, China;Department of Medicine, Westchester Medical Center and New York Medical College, Valhalla 10595, NY, USA;Department of Medicine, Division of Hematology and Oncology, University of Iowa Carver College of Medicine, Iowa City 52242, IA, USA;Department of Oncology, Henan Province People’s Hospital | |
[2] , Zhengzhou University, Zhengzhou, China | |
关键词: Ceritinib; Crizotinib; ALK-1; Anaplastic lymphoma kinase; | |
Others : 1133307 DOI : 10.1186/s13045-015-0122-8 |
|
received in 2014-12-29, accepted in 2015-02-13, 发布年份 2015 | |
【 摘 要 】
Anaplastic lymphoma kinase 1 (ALK-1) is a member of the insulin receptor tyrosine kinase family. ALK-1 was initially found in anaplastic large cell lymphoma (ALCL). ALK mutations have also been implicated in the pathogenesis of non-small cell lung cancer (NSCLC) and other solid tumors. Multiple small molecule inhibitors with activity against ALK and related oncoproteins are under clinical development. Two of them, crizotinib and ceritinib, have been approved by FDA for treatment of locally advanced and metastatic NSCLC. More agents (alectinib, ASP3026, X396) with improved safety, selectivity, and potency are in the pipeline. Dual inhibitors targeting ALK and EGFRm (AP26113), TRK (TSR011), FAK (CEP-37440), or ROS1 (RXDX-101, PF-06463922) are under active clinical development.
【 授权许可】
2015 Iragavarapu et al.; licensee BioMed Central.
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
20150304141924817.pdf | 458KB | download |
【 参考文献 】
- [1]Orscheschek K, Merz H, Hell J, Binder T, Bartels H, Feller AC: Large-cell anaplastic lymphoma-specific translocation (t[2;5] [p23;q35]) in Hodgkin’s disease: indication of a common pathogenesis? Lancet 1995, 345(8942):87-90.
- [2]Ullrich A, Schlessinger J: Signal transduction by receptors with tyrosine kinase activity. Cell 1990, 61(2):203-212.
- [3]Roskoski R Jr: Anaplastic lymphoma kinase (ALK): structure, oncogenic activation, and pharmacological inhibition. Pharmacol Res 2013, 68(1):68-94.
- [4]Bullrich F, Morris SW, Hummel M, Pileri S, Stein H, Croce CM: Nucleophosmin (NPM) gene rearrangements in Ki-1-positive lymphomas. Cancer Res 1994, 54(11):2873-2877.
- [5]Pillay K, Govender D, Chetty R: ALK protein expression in rhabdomyosarcomas. Histopathology 2002, 41(5):461-467.
- [6]Cessna MH, Zhou H, Sanger WG, Perkins SL, Tripp S, Pickering D, et al.: Expression of ALK1 and p80 in inflammatory myofibroblastic tumor and its mesenchymal mimics: a study of 135 cases. Mod Pathol 2002, 15(9):931-938.
- [7]Chen Y, Takita J, Choi YL, Kato M, Ohira M, Sanada M, et al.: Oncogenic mutations of ALK kinase in neuroblastoma. Nature 2008, 455(7215):971-974.
- [8]Shinmura K, Kageyama S, Tao H, Bunai T, Suzuki M, Kamo T, et al.: EML4-ALK fusion transcripts, but no NPM-, TPM3-, CLTC-, ATIC-, or TFG-ALK fusion transcripts, in non-small cell lung carcinomas. Lung Cancer 2008, 61(2):163-169.
- [9]Morris SW, Kirstein MN, Valentine MB, Dittmer K, Shapiro DN, Look AT, et al.: Fusion of a kinase gene, ALK, to a nucleolar protein gene, NPM, in non-Hodgkin’s lymphoma. Science 1995, 267(5196):316-317.
- [10]Onciu M, Behm FG, Downing JR, Shurtleff SA, Raimondi SC, Ma Z, et al.: ALK-positive plasmablastic B-cell lymphoma with expression of the NPM-ALK fusion transcript: report of 2 cases. Blood 2003, 102(7):2642-2644.
- [11]Bai RY, Dieter P, Peschel C, Morris SW, Duyster J: Nucleophosmin-anaplastic lymphoma kinase of large-cell anaplastic lymphoma is a constitutively active tyrosine kinase that utilizes phospholipase C-gamma to mediate its mitogenicity. Mol Cell Biol 1998, 18(12):6951-6961.
- [12]Fujimoto J, Shiota M, Iwahara T, Seki N, Satoh H, Mori S, et al.: Characterization of the transforming activity of p80, a hyperphosphorylated protein in a Ki-1 lymphoma cell line with chromosomal translocation t(2;5). Proc Natl Acad Sci U S A 1996, 93(9):4181-4186.
- [13]Leventaki V, Drakos E, Medeiros LJ, Lim MS, Elenitoba-Johnson KS, Claret FX, et al.: NPM-ALK oncogenic kinase promotes cell-cycle progression through activation of JNK/cJun signaling in anaplastic large-cell lymphoma. Blood 2007, 110(5):1621-1630.
- [14]Staber PB, Vesely P, Haq N, Ott RG, Funato K, Bambach I, et al.: The oncoprotein NPM-ALK of anaplastic large-cell lymphoma induces JUNB transcription via ERK1/2 and JunB translation via mTOR signaling. Blood 2007, 110(9):3374-3383.
- [15]Bai RY, Ouyang T, Miething C, Morris SW, Peschel C, Duyster J: Nucleophosmin-anaplastic lymphoma kinase associated with anaplastic large-cell lymphoma activates the phosphatidylinositol 3-kinase/Akt antiapoptotic signaling pathway. Blood 2000, 96(13):4319-4327.
- [16]Nieborowska-Skorska M, Slupianek A, Xue L, Zhang Q, Raghunath PN, Hoser G, et al.: Role of signal transducer and activator of transcription 5 in nucleophosmin/ anaplastic lymphoma kinase-mediated malignant transformation of lymphoid cells. Cancer Res 2001, 61(17):6517-6523.
- [17]Chiarle R, Simmons WJ, Cai H, Dhall G, Zamo A, Raz R, et al.: Stat3 is required for ALK-mediated lymphomagenesis and provides a possible therapeutic target. Nat Med 2005, 11(6):623-629.
- [18]Zamo A, Chiarle R, Piva R, Howes J, Fan Y, Chilosi M, et al.: Anaplastic lymphoma kinase (ALK) activates Stat3 and protects hematopoietic cells from cell death. Oncogene 2002, 21(7):1038-1047.
- [19]Furqan M, Mukhi N, Lee B, Liu D: Dysregulation of JAK-STAT pathway in hematological malignancies and JAK inhibitors for clinical application. Biomarker Res 2013, 1(1):5.
- [20]Cussac D, Greenland C, Roche S, Bai RY, Duyster J, Morris SW, et al.: Nucleophosmin-anaplastic lymphoma kinase of anaplastic large-cell lymphoma recruits, activates, and uses pp60c-src to mediate its mitogenicity. Blood 2004, 103(4):1464-1471.
- [21]Stoica GE, Kuo A, Aigner A, Sunitha I, Souttou B, Malerczyk C, et al.: Identification of anaplastic lymphoma kinase as a receptor for the growth factor pleiotrophin. J Biol Chem 2001, 276(20):16772-16779.
- [22]Lamant L, Dastugue N, Pulford K, Delsol G, Mariame B: A new fusion gene TPM3-ALK in anaplastic large cell lymphoma created by a (1;2)(q25;p23) translocation. Blood 1999, 93(9):3088-3095.
- [23]Sugawara E, Togashi Y, Kuroda N, Sakata S, Hatano S, Asaka R, et al.: Identification of anaplastic lymphoma kinase fusions in renal cancer: large-scale immunohistochemical screening by the intercalated antibody-enhanced polymer method. Cancer 2012, 118(18):4427-4436.
- [24]Lawrence B, Perez-Atayde A, Hibbard MK, Rubin BP, Dal Cin P, Pinkus JL, et al.: TPM3-ALK and TPM4-ALK oncogenes in inflammatory myofibroblastic tumors. Am J Pathol 2000, 157(2):377-384.
- [25]Butti MG, Bongarzone I, Ferraresi G, Mondellini P, Borrello MG, Pierotti MA: A sequence analysis of the genomic regions involved in the rearrangements between TPM3 and NTRK1 genes producing TRK oncogenes in papillary thyroid carcinomas. Genomics 1995, 28(1):15-24.
- [26]Coulier F, Martin-Zanca D, Ernst M, Barbacid M: Mechanism of activation of the human trk oncogene. Mol Cell Biol 1989, 9(1):15-23.
- [27]Du XL, Hu H, Lin DC, Xia SH, Shen XM, Zhang Y, et al.: Proteomic profiling of proteins dysregulted in Chinese esophageal squamous cell carcinoma. J Mol Med 2007, 85(8):863-875.
- [28]Jazii FR, Najafi Z, Malekzadeh R, Conrads TP, Ziaee AA, Abnet C, et al.: Identification of squamous cell carcinoma associated proteins by proteomics and loss of beta tropomyosin expression in esophageal cancer. World J Gastroenterol 2006, 12(44):7104-7112.
- [29]Mathew P, Morris SW, Kane JR, Shurtleff SA, Pasquini M, Jenkins NA, et al.: Localization of the murine homolog of the anaplastic lymphoma kinase (AlK) gene on mouse chromosome 17. Cytogenet Cell Genet 1995, 70(1–2):143-144.
- [30]Meech SJ, McGavran L, Odom LF, Liang X, Meltesen L, Gump J, et al.: Unusual childhood extramedullary hematologic malignancy with natural killer cell properties that contains tropomyosin 4–anaplastic lymphoma kinase gene fusion. Blood 2001, 98(4):1209-1216.
- [31]Colleoni GW, Bridge JA, Garicochea B, Liu J, Filippa DA, Ladanyi M: ATIC-ALK: A novel variant ALK gene fusion in anaplastic large cell lymphoma resulting from the recurrent cryptic chromosomal inversion, inv (2)(p23q35). Am J Pathol 2000, 156(3):781-789.
- [32]Debiec-Rychter M, Marynen P, Hagemeijer A, Pauwels P: ALK-ATIC fusion in urinary bladder inflammatory myofibroblastic tumor. Genes, Chromosomes Cancer 2003, 38(2):187-190.
- [33]Chiarle R, Voena C, Ambrogio C, Piva R, Inghirami G: The anaplastic lymphoma kinase in the pathogenesis of cancer. Nat Rev Cancer 2008, 8(1):11-23.
- [34]Cools J, Wlodarska I, Somers R, Mentens N, Pedeutour F, Maes B, et al.: Identification of novel fusion partners of ALK, the anaplastic lymphoma kinase, in anaplastic large-cell lymphoma and inflammatory myofibroblastic tumor. Genes, Chromosomes Cancer 2002, 34(4):354-362.
- [35]Debelenko LV, Arthur DC, Pack SD, Helman LJ, Schrump DS, Tsokos M: Identification of CARS-ALK fusion in primary and metastatic lesions of an inflammatory myofibroblastic tumor. Lab Invest 2003, 83(9):1255-1265.
- [36]Huret J, Senon S: ALK (anaplastic lymphoma kinase). Atlas Genet Cytogenet Oncol Haematol 2003, 7(4):217-220.
- [37]Lamant L, Gascoyne RD, Duplantier MM, Armstrong F, Raghab A, Chhanabhai M, et al.: Non-muscle myosin heavy chain (MYH9): a new partner fused to ALK in anaplastic large cell lymphoma. Genes, Chromosomes Cancer 2003, 37(4):427-432.
- [38]Ma Z, Hill DA, Collins MH, Morris SW, Sumegi J, Zhou M, et al.: Fusion of ALK to the Ran-binding protein 2 (RANBP2) gene in inflammatory myofibroblastic tumor. Genes, Chromosomes Cancer 2003, 37(1):98-105.
- [39]Tort F, Campo E, Pohlman B, Hsi E: Heterogeneity of genomic breakpoints in MSN-ALK translocations in anaplastic large cell lymphoma. Hum Pathol 2004, 35(8):1038-1041.
- [40]Bridge JA, Kanamori M, Ma Z, Pickering D, Hill DA, Lydiatt W, et al.: Fusion of the ALK gene to the clathrin heavy chain gene, CLTC, in inflammatory myofibroblastic tumor. Am J Pathol 2001, 159(2):411-415.
- [41]De Paepe P, Baens M, Van Krieken H, Verhasselt B, Stul M, Simons A, et al.: ALK activation by the CLTC-ALK fusion is a recurrent event in large B-cell lymphoma. Blood 2003, 102(7):2638-2641.
- [42]Griffin CA, Hawkins AL, Dvorak C, Henkle C, Ellingham T, Perlman EJ: Recurrent involvement of 2p23 in inflammatory myofibroblastic tumors. Cancer Res 1999, 59(12):2776-2780.
- [43]Patel AS, Murphy KM, Hawkins AL, Cohen JS, Long PP, Perlman EJ, et al.: RANBP2 and CLTC are involved in ALK rearrangements in inflammatory myofibroblastic tumors. Cancer Genet Cytogenet 2007, 176(2):107-114.
- [44]Tort F, Pinyol M, Pulford K, Roncador G, Hernandez L, Nayach I, et al.: Molecular characterization of a new ALK translocation involving moesin (MSN-ALK) in anaplastic large cell lymphoma. Lab Invest 2001, 81(3):419-426.
- [45]Bedwell C, Rowe D, Moulton D, Jones G, Bown N, Bacon CM: Cytogenetically complex SEC31A-ALK fusions are recurrent in ALK-positive large B-cell lymphomas. Haematologica 2011, 96(2):343-346.
- [46]Choi YL, Soda M, Yamashita Y, Ueno T, Takashima J, Nakajima T, et al.: EML4-ALK mutations in lung cancer that confer resistance to ALK inhibitors. N Engl J Med 2010, 363(18):1734-1739.
- [47]Debelenko LV, Raimondi SC, Daw N, Shivakumar BR, Huang D, Nelson M, et al.: Renal cell carcinoma with novel VCL-ALK fusion: new representative of ALK-associated tumor spectrum. Mod Pathol 2011, 24(3):430-442.
- [48]Hernandez L, Bea S, Bellosillo B, Pinyol M, Falini B, Carbone A, et al.: Diversity of genomic breakpoints in TFG-ALK translocations in anaplastic large cell lymphomas: identification of a new TFG-ALK (XL) chimeric gene with transforming activity. Am J Pathol 2002, 160(4):1487-1494.
- [49]Hernández L, Pinyol M, Hernández S, Beà S, Pulford K, Rosenwald A, et al.: TRK-fused gene (TFG) is a New partner of ALK in anaplastic large cell lymphoma producing Two structurally DifferentTFG-ALK translocations. Blood 1999, 94(9):3265-3268.
- [50]Jung Y, Kim P, Jung Y, Keum J, Kim SN, Choi YS, et al.: Discovery of ALK-PTPN3 gene fusion from human non-small cell lung carcinoma cell line using next generation RNA sequencing. Genes, Chromosomes Cancer 2012, 51(6):590-597.
- [51]Lipson D, Capelletti M, Yelensky R, Otto G, Parker A, Jarosz M, et al.: Identification of new ALK and RET gene fusions from colorectal and lung cancer biopsies. Nat Med 2012, 18(3):382-384.
- [52]Panagopoulos I, Nilsson T, Domanski HA, Isaksson M, Lindblom P, Mertens F, et al.: Fusion of the SEC31L1 and ALK genes in an inflammatory myofibroblastic tumor. Int J Cancer 2006, 118(5):1181-1186.
- [53]Takeuchi K, Choi YL, Togashi Y, Soda M, Hatano S, Inamura K, et al.: KIF5B-ALK, a novel fusion oncokinase identified by an immunohistochemistry-based diagnostic system for ALK-positive lung cancer. Clin Cancer Res 2009, 15(9):3143-3149.
- [54]Takeuchi K, Soda M, Togashi Y, Ota Y, Sekiguchi Y, Hatano S, et al.: Identification of a novel fusion, SQSTM1-ALK, in ALK-positive large B-cell lymphoma. Haematologica 2011, 96(3):464-467.
- [55]Togashi Y, Soda M, Sakata S, Sugawara E, Hatano S, Asaka R, et al.: KLC1-ALK: a novel fusion in lung cancer identified using a formalin-fixed paraffin-embedded tissue only. PLoS One 2012, 7(2):e31323.
- [56]Van Roosbroeck K, Cools J, Dierickx D, Thomas J, Vandenberghe P, Stul M, et al.: ALK-positive large B-cell lymphomas with cryptic SEC31A-ALK and NPM1-ALK fusions. Haematologica 2010, 95(3):509-513.
- [57]Wong DW, Leung EL, Wong SK, Tin VP, Sihoe AD, Cheng LC, et al.: A novel KIF5B-ALK variant in nonsmall cell lung cancer. Cancer 2011, 117(12):2709-2718.
- [58]Touriol C, Greenland C, Lamant L, Pulford K, Bernard F, Rousset T, et al.: Further demonstration of the diversity of chromosomal changes involving 2p23 in ALK-positive lymphoma: 2 cases expressing ALK kinase fused to CLTCL (clathrin chain polypeptide-like). Blood 2000, 95(10):3204-3207.
- [59]Soda M, Choi YL, Enomoto M, Takada S, Yamashita Y, Ishikawa S, et al.: Identification of the transforming EML4-ALK fusion gene in non-small-cell lung cancer. Nature 2007, 448(7153):561-566.
- [60]Shaw AT, Kim DW, Nakagawa K, Seto T, Crino L, Ahn MJ, et al.: Crizotinib versus chemotherapy in advanced ALK-positive lung cancer. N Engl J Med 2013, 368(25):2385-2394.
- [61]Mano H: Non-solid oncogenes in solid tumors: EML4-ALK fusion genes in lung cancer. Cancer Sci 2008, 99(12):2349-2355.
- [62]Inamura K, Takeuchi K, Togashi Y, Nomura K, Ninomiya H, Okui M, et al.: EML4-ALK fusion is linked to histological characteristics in a subset of lung cancers. J Thorac Oncol 2008, 3(1):13-17.
- [63]Sasaki T, Rodig SJ, Chirieac LR, Janne PA: The biology and treatment of EML4-ALK non-small cell lung cancer. Eur J Cancer 2010, 46(10):1773-1780.
- [64]Lin E, Li L, Guan Y, Soriano R, Rivers CS, Mohan S, et al.: Exon array profiling detects EML4-ALK fusion in breast, colorectal, and non-small cell lung cancers. Mol Cancer Res 2009, 7(9):1466-1476.
- [65]Rikova K, Guo A, Zeng Q, Possemato A, Yu J, Haack H, et al.: Global survey of phosphotyrosine signaling identifies oncogenic kinases in lung cancer. Cell 2007, 131(6):1190-1203.
- [66]Cui JJ, Tran-Dube M, Shen H, Nambu M, Kung PP, Pairish M, et al.: Structure based drug design of crizotinib (PF-02341066), a potent and selective dual inhibitor of mesenchymal-epithelial transition factor (c-MET) kinase and anaplastic lymphoma kinase (ALK). J Med Chem 2011, 54(18):6342-6363.
- [67]Bergethon K, Shaw AT, Ou SH, Katayama R, Lovly CM, McDonald NT, et al.: ROS1 rearrangements define a unique molecular class of lung cancers. J Clin Oncol 2012, 30(8):863-870.
- [68]Camidge DR, Bang YJ, Kwak EL, Iafrate AJ, Varella-Garcia M, Fox SB, et al.: Activity and safety of crizotinib in patients with ALK-positive non-small-cell lung cancer: updated results from a phase 1 study. Lancet Oncol 2012, 13(10):1011-1019.
- [69]Kim D-W, Ahn M-J, Shi Y, De Pas TM, Yang P-C, Riely GJ, et al.: Results of a global phase II study with crizotinib in advanced ALK-positive non-small cell lung cancer (NSCLC). ASCO Meet Abstr 2012, 30(15):7533.
- [70]Kwak EL, Bang YJ, Camidge DR, Shaw AT, Solomon B, Maki RG, et al.: Anaplastic lymphoma kinase inhibition in non-small-cell lung cancer. N Engl J Med 2010, 363(18):1693-1703.
- [71]Mok T, Kim D-W, Wu Y-L, Solomon BJ, Nakagawa K, Mekhail T, et al.: First-line crizotinib versus pemetrexed-cisplatin or pemetrexed-carboplatin in patients (pts) with advanced ALK-positive non-squamous non-small cell lung cancer (NSCLC): results of a phase III study (PROFILE 1014). ASCO Meet Abstr 2014, 32(15):8002.
- [72]Katayama R, Shaw AT, Khan TM, Mino-Kenudson M, Solomon BJ, Halmos B, et al.: Mechanisms of acquired crizotinib resistance in ALK-rearranged lung Cancers. Sci Transl Med 2012, 4(120):120ra117.
- [73]Doebele RC, Pilling AB, Aisner DL, Kutateladze TG, Le AT, Weickhardt AJ, et al.: Mechanisms of resistance to crizotinib in patients with ALK gene rearranged non-small cell lung cancer. Clin Cancer Res 2012, 18(5):1472-1482.
- [74]Sasaki T, Koivunen J, Ogino A, Yanagita M, Nikiforow S, Zheng W, et al.: A novel ALK secondary mutation and EGFR signaling cause resistance to ALK kinase inhibitors. Cancer Res 2011, 71(18):6051-6060.
- [75]Huang D, Kim DW, Kotsakis A, Deng S, Lira P, Ho SN, et al.: Multiplexed deep sequencing analysis of ALK kinase domain identifies resistance mutations in relapsed patients following crizotinib treatment. Genomics 2013, 102(3):157-162.
- [76]Kim S, Kim TM, Kim DW, Go H, Keam B, Lee SH, et al.: Heterogeneity of genetic changes associated with acquired crizotinib resistance in ALK-rearranged lung cancer. J Thorac Oncol 2013, 8(4):415-422.
- [77]Sang J, Acquaviva J, Friedland JC, Smith DL, Sequeira M, Zhang C, et al.: Targeted inhibition of the molecular chaperone Hsp90 overcomes ALK inhibitor resistance in non-small cell lung cancer. Cancer Discov 2013, 3(4):430-443.
- [78]Chen Z, Sasaki T, Tan X, Carretero J, Shimamura T, Li D, et al.: Inhibition of ALK, PI3K/MEK, and HSP90 in murine lung adenocarcinoma induced by EML4-ALK fusion oncogene. Cancer Res 2010, 70(23):9827-9836.
- [79]Sakamoto H, Tsukaguchi T, Hiroshima S, Kodama T, Kobayashi T, Fukami TA, et al.: CH5424802, a selective ALK inhibitor capable of blocking the resistant gatekeeper mutant. Cancer Cell 2011, 19(5):679-690.
- [80]Kinoshita K, Asoh K, Furuichi N, Ito T, Kawada H, Hara S, et al.: Design and synthesis of a highly selective, orally active and potent anaplastic lymphoma kinase inhibitor (CH5424802). Bioorg Med Chem 2012, 20(3):1271-1280.
- [81]Seto T, Kiura K, Nishio M, Nakagawa K, Maemondo M, Inoue A, et al.: CH5424802 (RO5424802) for patients with ALK-rearranged advanced non-small-cell lung cancer (AF-001JP study): a single-arm, open-label, phase 1–2 study. Lancet Oncol 2013, 14(7):590-598.
- [82]Gadgeel SM, Gandhi L, Riely GJ, Chiappori AA, West HL, Azada MC, et al.: Safety and activity of alectinib against systemic disease and brain metastases in patients with crizotinib-resistant ALK-rearranged non-small-cell lung cancer (AF-002JG): results from the dose-finding portion of a phase 1/2 study. Lancet Oncol 2014, 15(10):1119-1128.
- [83]Gainor JF, Sherman CA, Willoughby K, Logan J, Kennedy E, Brastianos PK, et al.: Alectinib salvages CNS metastases in ALK-positive lung cancer patients previously treated with crizotinib and ceritinib. J Thorac Oncol 2015, 10(2):232-236.
- [84]Marsilje TH, Pei W, Chen B, Lu W, Uno T, Jin Y, et al.: Synthesis, structure-activity relationships, and in vivo efficacy of the novel potent and selective anaplastic lymphoma kinase (ALK) inhibitor 5-chloro-N2-(2-isopropoxy-5-methyl-4-(piperidin-4-yl)phenyl)-N4-(2-(isopropylsulf onyl)phenyl)pyrimidine-2,4-diamine (LDK378) currently in phase 1 and phase 2 clinical trials. J Med Chem 2013, 56(14):5675-5690.
- [85]Galkin AV, Melnick JS, Kim S, Hood TL, Li N, Li L, et al.: Identification of NVP-TAE684, a potent, selective, and efficacious inhibitor of NPM-ALK. Proc Natl Acad Sci U S A 2007, 104(1):270-275.
- [86]Friboulet L, Li N, Katayama R, Lee CC, Gainor JF, Crystal AS, et al.: The ALK inhibitor ceritinib overcomes crizotinib resistance in non-small cell lung cancer. Cancer discovery 2014, 4(6):662-673.
- [87]Rolfo C, Passiglia F, Russo A, Pauwels P: Looking for a new panacea in ALK-rearranged NSCLC: may be Ceritinib? Expert Opin Ther Targets 2014, 18(9):983-985.
- [88]Vansteenkiste JF: Ceritinib for treatment of ALK-rearranged advanced non-small-cell lung cancer. Future Oncol 2014, 10(12):1925-1939.
- [89]Shaw AT, Mehra R, Kim D-W, Felip E, Chow LQM, Camidge DR, et al.: Clinical activity of the ALK inhibitor LDK378 in advanced, ALK-positive NSCLC. ASCO Meet Abstr 2013, 31(15):8010.
- [90]Shaw AT, Kim DW, Mehra R, Tan DS, Felip E, Chow LQ, et al.: Ceritinib in ALK-rearranged non-small-cell lung cancer. N Engl J Med 2014, 370(13):1189-1197.
- [91]Dhillon S, Clark M: Ceritinib: first global approval. Drugs 2014, 74(11):1285-1291.
- [92]Zhang S, Wang F, Keats J, Ning Y, Wardwell SD, Moran L, et al.: Abstract LB-298: AP26113, a potent ALK inhibitor, overcomes mutations in EML4-ALK that confer resistance to PF-02341066 (PF1066). Cancer Res 2011, 70(8):LB-298.
- [93]Gettinger SN, Bazhenova L, Salgia R, Langer CJ, Gold KA, Rosell R, et al.: Updated efficacy and safety of the ALK inhibitor AP26113 in patients (pts) with advanced malignancies, including ALK+ non-small cell lung cancer (NSCLC). ASCO Meet Abstr 2014, 32(15):8047.
- [94]Camidge DR, Bazhenova L, Salgia R, Weiss GJ, Langer CJ, Shaw AT, et al.: First-in-human dose-finding study of the ALK/EGFR inhibitor AP26113 in patients with advanced malignancies: Updated results. ASCO Meet Abstr 2013, 31(15):8031.
- [95]Patnaik A, LoRusso P, Ball HA, Bahceci E, Yuen G, Papadopoulos KP, et al.: Pharmacokinetics and safety of an oral ALK inhibitor, ASP3026, observed in a phase I dose escalation trial. ASCO Meet Abstr 2013, 31(15):2602.
- [96]Kuromitsu S, Mori M, Shimada I, Kondoh Y, Shindoh N, Soga T, et al.: Abstract A227: Antitumor activities of ASP3026 against EML4-ALK-dependent tumor models. Mol Cancer Ther 2011, 10(1):A227.
- [97]Maitland ML, Ou S-HI, Tolcher AW, LoRusso P, Bahceci E, Ball HA, et al.: Safety, activity, and pharmacokinetics of an oral anaplastic lymphoma kinase (ALK) inhibitor, ASP3026, observed in a “fast follower” phase 1 trial design. ASCO Meet Abstr 2014, 32(15):2624.
- [98]Lovly CM, Heuckmann JM, De Stanchina E, Chen H, Thomas RK, Liang C, et al.: Insights into ALK-driven cancers revealed through development of novel ALK tyrosine kinase inhibitors. Cancer Res 2011, 71(14):4920-4931.
- [99]Weiss GJ, Sachdev JC, Infante JR, Mita MM, Natale RB, Arkenau H-T, et al.: Phase (Ph) 1/2 study of TSR-011, a potent inhibitor of ALK and TRK, including crizotinib-resistant ALK mutations. ASCO Meet Abstr 2014, 32(15):e19005.
- [100]Infante JR, Camidge DR, Mileshkin LR, Chen EX, Hicks RJ, Rischin D, et al.: Safety, pharmacokinetic, and pharmacodynamic phase I dose-escalation trial of PF-00562271, an inhibitor of focal adhesion kinase, in advanced solid tumors. J Clin Oncol 2012, 30(13):1527-1533.
- [101]Goody MF, Henry CA: Dynamic interactions between cells and their extracellular matrix mediate embryonic development. Mol Reprod Dev 2010, 77(6):475-488.
- [102]Ardini E, Menichincheri M, De Ponti C, Amboldi N, Saccardo MB, Texido G, et al.: Abstract A243: Characterization of NMS-E628, a small molecule inhibitor of anaplastic lymphoma kinase with antitumor efficacy in ALK-dependent lymphoma and non-small cell lung cancer models. Mol Cancer Ther 2009, 8(1):A244.
- [103]Johnson TW, Richardson PF, Bailey S, Brooun A, Burke BJ, Collins MR, et al.: Discovery of (10R)-7-amino-12-fluoro-2,10,16-trimethyl-15-oxo-10,15,16,17-tetrahydro-2H-8,4-(m etheno)pyrazolo[4,3-h][2,5,11]-benzoxadiazacyclotetradecine-3-carbonitrile (PF-06463922), a macrocyclic inhibitor of anaplastic lymphoma kinase (ALK) and c-ros oncogene 1 (ROS1) with preclinical brain exposure and broad-spectrum potency against ALK-resistant mutations. J Med Chem 2014, 57(11):4720-4744.
- [104]Zou HY, Engstrom LR, Li Q, West Lu M, Tang RW, Wang H, et al.: Abstract A277: PF-06463922, a novel ROS1/ALK inhibitor, demonstrates sub-nanomolar potency against oncogenic ROS1 fusions and capable of blocking the resistant ROS1G2032R mutant in preclinical tumor models. Mol Cancer Ther 2013, 12(11 Supplement):A277.
- [105]Akinleye A, Avvaru P, Furqan M, Song Y, Liu D: Phosphatidylinositol 3-kinase (PI3K) inhibitors as cancer therapeutics. J Hematol Oncol 2013, 6(1):88.
- [106]Akinleye A, Chen Y, Mukhi N, Song Y, Liu D: Ibrutinib and novel BTK inhibitors in clinical development. J Hematol Oncol 2013, 6(1):59.
- [107]Akinleye A, Furqan M, Mukhi N, Ravella P, Liu D: MEK and the inhibitors: from bench to bedside. J Hematol Oncol 2013, 6(1):27.
- [108]Gerecitano J: SINE (selective inhibitor of nuclear export)-translational science in a new class of anti-cancer agents. J Hematol Oncol 2014, 7(1):67.
- [109]Parikh K, Cang S, Sekhri A, Liu D: Selective inhibitors of nuclear export (SINE)-a novel class of anti-cancer agents. J Hematol Oncol 2014, 7(1):78.
- [110]Shi L, Chen S, Yang L, Li Y: The role of PD-1 and PD-L1 in T-cell immune suppression in patients with hematological malignancies. J Hematol Oncol 2013, 6(1):74.