期刊论文详细信息
Journal of Hematology & Oncology
Targeted drug delivery for cancer therapy: the other side of antibodies
Gary Gellerman2  Michael A Firer1 
[1] Department of Chemical Engineering and Biotechnology, Ariel University Center, Ariel, 40700, Israel;Department of Biological Chemistry, Ariel University Center, Ariel, 40700, Israel
关键词: Peptide-drug conjugates;    Antibody-drug conjugates;    Therapeutic antibodies;    Targeted drug delivery;   
Others  :  821875
DOI  :  10.1186/1756-8722-5-70
 received in 2012-09-20, accepted in 2012-10-18,  发布年份 2012
PDF
【 摘 要 】

Therapeutic monoclonal antibody (TMA) based therapies for cancer have advanced significantly over the past two decades both in their molecular sophistication and clinical efficacy. Initial development efforts focused mainly on humanizing the antibody protein to overcome problems of immunogenicity and on expanding of the target antigen repertoire. In parallel to naked TMAs, antibody-drug conjugates (ADCs) have been developed for targeted delivery of potent anti-cancer drugs with the aim of bypassing the morbidity common to conventional chemotherapy. This paper first presents a review of TMAs and ADCs approved for clinical use by the FDA and those in development, focusing on hematological malignancies. Despite advances in these areas, both TMAs and ADCs still carry limitations and we highlight the more important ones including cancer cell specificity, conjugation chemistry, tumor penetration, product heterogeneity and manufacturing issues. In view of the recognized importance of targeted drug delivery strategies for cancer therapy, we discuss the advantages of alternative drug carriers and where these should be applied, focusing on peptide-drug conjugates (PDCs), particularly those discovered through combinatorial peptide libraries. By defining the advantages and disadvantages of naked TMAs, ADCs and PDCs it should be possible to develop a more rational approach to the application of targeted drug delivery strategies in different situations and ultimately, to a broader basket of more effective therapies for cancer patients.

【 授权许可】

   
2012 Firer and Gellerman; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20140712085756525.pdf 632KB PDF download
Figure 2. 10KB Image download
Figure 1. 40KB Image download
【 图 表 】

Figure 1.

Figure 2.

【 参考文献 】
  • [1]Oldham RK, Dillman RO: Monoclonal antibodies in cancer therapy: 25 years of progress. J Cli Oncol Offic J Am Soc Clin Oncol 2008, 26(11):1774-1777.
  • [2]Nissim A, Chernajovsky Y: Historical development of monoclonal antibody therapeutics. Handb Exp Pharmacol 2008,  (181):3-18.
  • [3]Yamada T: Therapeutic monoclonal antibodies. Keio J Med 2011, 60(2):37-46. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/21720199 webcite
  • [4]Scott AM, Wolchok JD, Old LJ: Antibody therapy of cancer. Nat Rev Cancer 2012, 12(4):278-287.
  • [5]Gellerman G, Firer MA: Targeted dendrimers in cancer drug delivery systems. In Targeted Drug Delivery in Cancer Therapeutics. Edited by Firer MA. Transworld Research Network, Kerala; 2010:185-209.
  • [6]Tazi I, Nafil H, Mahmal L: Monoclonal antibodies in hematological malignancies: past, present and future. J Cancer Res Ther 2011, 7(4):399-407.
  • [7]Yoon S, Kim Y-S, Shim H, Chung J: Current perspectives on therapeutic antibodies. Biotechnol Bioprocess Eng 2010, 15(5):709-715.
  • [8]Robak T, Robak P, Smolewski P: The evaluation and optimal use of rituximab in lymphoid malignancies. Blood Lym Can Targets Ther 2012, 2:1-16.
  • [9]Nadler LM, Stashenko P, Hardy R, Kaplan WD, Button LN, Kufe DW, Antman KH, et al.: Serotherapy of a patient with a monoclonal antibody directed against a human lymphoma-associated antigen. Cancer Res 1980, 40(9):3147-3154. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/7427932 webcite
  • [10]Reichert JM, Dhimolea E: The future of antibodies as cancer drugs. Drug Discov Today 2012., 00(00)
  • [11]Trarbach T, Moehler M, Heinemann V, Köhne C-H, Przyborek M, Schulz C, Sneller V, et al.: Phase II trial of mapatumumab, a fully human agonistic monoclonal antibody that targets and activates the tumour necrosis factor apoptosis-inducing ligand receptor-1 (TRAIL-R1), in patients with refractory colorectal cancer. Br J Cancer 2010, 102(3):506-512. Retrieved from http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2822942&tool=pmcentrez&rendertype=abstract webcite
  • [12]Kubota T, Niwa R, Satoh M, Akinaga S, Shitara K, Hanai N: Engineered therapeutic antibodies with improved effector functions. Cancer Sci 2009, 100(9):1566-1572.
  • [13]Schenerman MA, Hope JN, Kletke C, Singh JK, Kimura R, Tsao EI, Folena-Wasserman G: Comparability testing of a humanized monoclonal antibody (Synagis) to support cell line stability, process validation, and scale-up for manufacturing. Biol J Int Assoc Biol Stand 1999, 27(3):203-215.
  • [14]Li F, Vijayasankaran N, Shen A, Kiss R, Amanullah A: Cell culture processes for monoclonal antibody production. MAbs 2010, 2(5):466-479.
  • [15]Maloney DG, Grillo-López AJ, White CA, Bodkin D, Schilder RJ, Neidhart JA, Janakiraman N, et al.: IDEC-C2B8 (Rituximab) anti-CD20 monoclonal antibody therapy in patients with relapsed low-grade non-Hodgkin’s lymphoma. Blood 1997, 90(6):2188-2195. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/9310469 webcite
  • [16]Beers SA, Chan CHT, French RR, Cragg MS, Glennie MJ: CD20 as a target for therapeutic type I and II monoclonal antibodies. Semin Hematol 2010, 47(2):107-114.
  • [17]Dillman RO: Immunophenotyping of chronic lymphoid leukemias. J Clin Oncol Offic J Am Soc Clin Oncol 2008, 26(8):1193-1194.
  • [18]Reff ME, Carner K, Chambers KS, Chinn PC, Leonard JE, Raab R, Newman RA, et al.: Depletion of B cells in vivo by a chimeric mouse human monoclonal antibody to CD20. Blood 1994, 83(2):435-445. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/7506951 webcite
  • [19]Vogel WH: Infusion reactions: diagnosis, assessment, and management. Clin J Oncol Nurs 2010, 14(2):E10-E21.
  • [20]Witzig TE, Flinn IW, Gordon LI, Emmanouilides C, Czuczman MS, Saleh MN, Cripe L, et al.: Treatment with ibritumomab tiuxetan radioimmunotherapy in patients with rituximab-refractory follicular non-Hodgkin’s lymphoma. J Clin Oncol Offic J Am Soc Clin Oncol 2002, 20(15):3262-3269. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/12149300 webcite
  • [21]Iagaru A, Mittra ES, Ganjoo K, Knox SJ, Goris ML: 131I-Tositumomab (Bexxar) vs. 90Y-Ibritumomab (Zevalin) therapy of low-grade refractory/relapsed non-Hodgkin lymphoma. Mol Imag Biol MIB Offic Publ Acad Mol Imag 2010, 12(2):198-203. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/19543946 webcite
  • [22]Sjogreen-Gleisner K, Dewaraja YK, Tennvall J, Linden O, Strand S-E, Ljungberg M: Dosimetry in patients with B-cell lymphoma treated with [Y-90]ibritumomab tiuxetan or [I-131]tositumomab. Q J Nucl Med Mol Imag 2011, 55(2):126-154. Retrieved from http://apps.webofknowledge.com.mgs-ariel.macam.ac.il/full_record.do?product=WOS&search_mode=GeneralSearch&qid=2&SID=W2eHGF91In1PP1mp6kk&page=1&doc=4&cacheurlFromRightClick=no webcite
  • [23]Skarbnik AP, Smith MR: Radioimmunotherapy in mantle cell lymphoma. Best practice & research. Clin Haematol 2012, 25(2):201-210. Retrieved from http://apps.webofknowledge.com.mgs-ariel.macam.ac.il/full_record.do?product=WOS&search_mode=GeneralSearch&qid=2&SID=W2eHGF91In1PP1mp6kk&page=1&doc=1&cacheurlFromRightClick=no webcite
  • [24]McLaughlin P, Grillo-López AJ, Link BK, Levy R, Czuczman MS, Williams ME, Heyman MR, et al.: Rituximab chimeric anti-CD20 monoclonal antibody therapy for relapsed indolent lymphoma: half of patients respond to a four-dose treatment program. J Clin Oncol Offic J Am Soc Clin Oncol 1998, 16(8):2825-2833. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/9704735 webcite
  • [25]Itälä M, Geisler CH, Kimby E, Juvonen E, Tjonnfjord G, Karlsson K, Remes K: Standard-dose anti-CD20 antibody rituximab has efficacy in chronic lymphocytic leukaemia: results from a Nordic multicentre study. Eur J Haematol 2002, 69(3):129-134. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/12406005 webcite
  • [26]Beers SA, French RR, Chan HTC, Lim SH, Jarrett TC, Vidal RM, Wijayaweera SS, et al.: Antigenic modulation limits the efficacy of anti-CD20 antibodies: implications for antibody selection. Blood 2010, 115(25):5191-5201.
  • [27]Manshouri T, Do K, Wang X, Giles FJ, O’Brien SM, Saffer H, Thomas D, et al.: Circulating CD20 is detectable in the plasma of patients with chronic lymphocytic leukemia and is of prognostic significance. Blood 2003, 101(7):2507-2513.
  • [28]Smith MR: Rituximab (monoclonal anti-CD20 antibody): mechanisms of action and resistance. Oncogene 2003, 22(47):7359-7368.
  • [29]Du J, Wang H, Zhong C, Peng B, Zhang M, Li B, Huo S, et al.: Structural basis for recognition of CD20 by therapeutic antibody Rituximab. J Biol Chem 2007, 282(20):15073-15080.
  • [30]Hatjiharissi E, Xu L, Santos DD, Hunter ZR, Ciccarelli BT, Verselis S, Modica M, et al.: Increased natural killer cell expression of CD16, augmented binding and ADCC activity to rituximab among individuals expressing the Fc{gamma}RIIIa-158 V/V and V/F polymorphism. Blood 2007, 110(7):2561-2564.
  • [31]Hammadi M, Pers J-O, Berthou C, Youinou P, Bordron A: A new approach to comparing anti-CD20 antibodies: importance of the lipid rafts in their lytic efficiency. OncoTargets Therap 2010, 3:99-109. Retrieved from http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2895776&tool=pmcentrez&rendertype=abstract webcite
  • [32]Griggs J, Zinkewich-Peotti K: The state of the art: immune-mediated mechanisms of monoclonal antibodies in cancer therapy. Br J Cancer 2009, 101(11):1807-1812.
  • [33]Desjarlais JR, Lazar GA: Modulation of antibody effector function. Exp Cell Res 2011, 317(9):1278-1285.
  • [34]Parekh BS, Berger E, Sibley S, Cahya S, Xiao L, LaCerte MA, Vaillancourt P, et al.: Development and validation of an antibody-dependent cell-mediated cytotoxicity-reporter gene assay. MAbs 2012, 4(3):310-309. 10.4161/mabs.19873
  • [35]Levy E, Roberti M, Mordoh J: Natural Killer Cells in Human Cancer: From Biological Functions to Clinical Applications. J Biomed Biotechnol 2011, 1-11.
  • [36]Shiao SL, Ganesan AP, Rugo HS, Coussens LM: Immune microenvironments in solid tumors: new targets for therapy. Genes Dev 2011, 25(24):2559-2572. Retrieved from http://genesdev.cshlp.org/cgi/content/abstract/25/24/2559 webcite
  • [37]Mishima Y, Terui Y, Mishima Y, Kuniyoshi R, Matsusaka S, Mikuniya M, Kojima K, et al.: High reproducible ADCC analysis revealed a competitive relation between ADCC and CDC and differences between FcγRllla polymorphism. Int Immunol 2012, 24(8):477-483.
  • [38]Teeling JL, Mackus WJM, Wiegman LJJM, van den Brakel JHN, Beers SA, French RR, van Meerten T, et al.: The biological activity of human CD20 monoclonal antibodies is linked to unique epitopes on CD20. J Immunol 2006, 177(1):362-371. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/16785532 webcite
  • [39]Haskova Z, Whitacre MN, Dede KA, Lee JM, Trulli SH, Ciucci M, Toso JF, et al.: Combination therapy with ofatumumab and bendamustine in xenograft model of chronic lymphocytic leukaemia. Br J Haematol 2012, 156(3):402-404.
  • [40]Reagan JL, Castillo JJ: Ofatumumab for newly diagnosed and relapsed/refractory chronic lymphocytic leukemia. Expert Rev Anticancer Ther 2011, 11(2):151-160.
  • [41]Goldenberg DM, Rossi EA, Stein R, Cardillo TM, Czuczman MS, Hernandez-Ilizaliturri FJ, Hansen HJ, et al.: Properties and structure-function relationships of veltuzumab (hA20), a humanized anti-CD20 monoclonal antibody. Blood 2009, 113(5):1062-1070.
  • [42]Negrea GO, Elstrom R, Allen SL, Rai KR, Abbasi RM, Farber CM, Teoh N, et al.: Subcutaneous injections of low-dose veltuzumab (humanized anti-CD20 antibody) are safe and active in patients with indolent non-Hodgkin’s lymphoma. Haematologica 2011, 96(4):567-573.
  • [43]Robak T, Robak E: New anti-CD20 monoclonal antibodies for the treatment of B-cell lymphoid malignancies. BioDrugs Clin Immunotherap Biopharm Gene Therap 2011, 25(1):13-25.
  • [44]Morschhauser F, Marlton P, Vitolo U, Lindén O, Seymour JF, Crump M, Coiffier B, et al.: Results of a phase I/II study of ocrelizumab, a fully humanized anti-CD20 mAb, in patients with relapsed/refractory follicular lymphoma. Ann Oncol Offic J Eur Soc Med Oncol / ESMO 2010, 21(9):1870-1876.
  • [45]Kausar F, Mustafa K, Sweis G, Sawaqed R, Alawneh K, Salloum R, Badaracco M, et al.: Ocrelizumab: a step forward in the evolution of B-cell therapy. Expert Opin Biol Ther 2009, 9(7):889-895.
  • [46]Mössner E, Brünker P, Moser S, Püntener U, Schmidt C, Herter S, Grau R, et al.: Increasing the efficacy of CD20 antibody therapy through the engineering of a new type II anti-CD20 antibody with enhanced direct and immune effector cell-mediated B-cell cytotoxicity. Blood 2010, 115(22):4393-4402.
  • [47]Illidge TM: Obinutuzumab (GA101)–a different anti-CD20 antibody with great expectations. Expert Opin Biol Ther 2012, 12(5):543-545.
  • [48]Treumann A, Lifely MR, Schneider P, Ferguson MA: Primary structure of CD52. J Biol Chem 1995, 270(11):6088-6099. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/7890742 webcite
  • [49]Golay J, Manganini M, Rambaldi A, Introna M: Effect of alemtuzumab on neoplastic B cells. Haematologica 2004, 89(12):1476-1483. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/15590398 webcite
  • [50]Alinari L, Yu B, Christian BA, Yan F, Shin J, Lapalombella R, Hertlein E, et al.: Combination anti-CD74 (milatuzumab) and anti-CD20 (rituximab) monoclonal antibody therapy has in vitro and in vivo activity in mantle cell lymphoma. Blood 2011, 117(17):4530-4541.
  • [51]Lambert JM: Drug-conjugated monoclonal antibodies for the treatment of cancer. Curr Opin Pharmacol 2005, 5(5):543-549.
  • [52]Lobo ED, Hansen RJ, Balthasar JP: Antibody pharmacokinetics and pharmacodynamics. J Pharm Sci 2004, 93(11):2645-2668.
  • [53]Alley SC, Okeley NM, Senter PD: Antibody-drug conjugates: targeted drug delivery for cancer. Curr Opin Chem Biol 2010, 14(4):529-537.
  • [54]Govindan SV, Goldenberg DM: Designing immunoconjugates for cancer therapy. Expert Opin Biol Ther 2012, 12(7):873-890.
  • [55]Bross PF, Beitz J, Chen G, Chen XH, Duffy E, Kieffer L, Roy S, et al.: Approval summary: gemtuzumab ozogamicin in relapsed acute myeloid leukemia. Clin Canc Res Offic J Am Assoc Canc Res 2001, 7(6):1490-1496. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/11410481 webcite
  • [56]Giles FJ, Kantarjian HM, Kornblau SM, Thomas DA, Garcia-Manero G, Waddelow TA, David CL, et al.: Mylotarg (gemtuzumab ozogamicin) therapy is associated with hepatic venoocclusive disease in patients who have not received stem cell transplantation. Cancer 2001, 92(2):406-413. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/11466696 webcite
  • [57]Wadleigh M, Richardson PG, Zahrieh D, Lee SJ, Cutler C, Ho V, Alyea EP, et al.: Prior gemtuzumab ozogamicin exposure significantly increases the risk of veno-occlusive disease in patients who undergo myeloablative allogeneic stem cell transplantation. Blood 2003, 102(5):1578-1582.
  • [58]Foyil KV, Bartlett NL: Brentuximab vedotin for the treatment of CD30+ lymphomas. Immunotherapy 2011, 3(4):475-485.
  • [59]Gualberto A: Brentuximab Vedotin (SGN-35), an antibody-drug conjugate for the treatment of CD30-positive malignancies. Expert Opin Investig Drugs 2012, 21(2):205-216.
  • [60]Lewis Phillips GD, Li G, Dugger DL, Crocker LM, Parsons KL, Mai E, Blättler WA, et al.: Targeting HER2-positive breast cancer with trastuzumab-DM1, an antibody-cytotoxic drug conjugate. Cancer Res 2008, 68(22):9280-9290.
  • [61]Burris HA, Rugo HS, Vukelja SJ, Vogel CL, Borson RA, Limentani S, Tan-Chiu E, et al.: Phase II study of the antibody drug conjugate trastuzumab-DM1 for the treatment of human epidermal growth factor receptor 2 (HER2)-positive breast cancer after prior HER2-directed therapy. J Clin Oncol Offic J Am Soc Clin Oncol 2011, 29(4):398-405.
  • [62]Blackwell KM, Miles D, Gianni L, Krop IE, Welslau M, Baselga J, et al.: Primary results from EMILIA, a phase III study of trastuzumab emtansine (T-DMI) versus capecitabine (X) and lapatinib (L) in HER2-positive locally advanced with trastuzumab (T) and a taxane. J Clin Oncol 2012., 30(Suppl) Abstract LBA1
  • [63]de Vries JF, Zwaan CM, De Bie M, Voerman JSA, den Boer ML, van Dongen JJM, van der Velden VHJ: The novel calicheamicin-conjugated CD22 antibody inotuzumab ozogamicin (CMC-544) effectively kills primary pediatric acute lymphoblastic leukemia cells. Leuk Offic J Leuk Soc Am Leuk Res Fund UK 2012, 26(2):255-264.
  • [64]Ogura M, Tobinai K, Hatake K, Uchida T, Kasai M, Oyama T, Suzuki T, et al.: Phase I study of inotuzumab ozogamicin (CMC-544) in Japanese patients with follicular lymphoma pretreated with rituximab-based therapy. Cancer Sci 2010, 101(8):1840-1845.
  • [65]Blanc V, Bousseau A, Caron A, Carrez C, Lutz RJ, Lambert JM: SAR3419: an anti-CD19-Maytansinoid Immunoconjugate for the treatment of B-cell malignancies. Clin Canc Res Offic J Am Assoc Canc Res 2011, 17(20):6448-6458.
  • [66]Polson AG, Ho WY, Ramakrishnan V: Investigational antibody-drug conjugates for hematological malignancies. Expert Opin Investig Drugs 2011, 20(1):75-85.
  • [67]Litvak-Greenfeld D, Benhar I: Risks and untoward toxicities of antibody-based immunoconjugates. Adv Drug Deliv Rev 2012.
  • [68]Sharkey RM, Govindan SV, Cardillo TM, Goldenberg DM: Epratuzumab-SN-38: a new antibody-drug conjugate for the therapy of hematologic malignancies. Mol Cancer Ther 2012, 11(1):224-234.
  • [69]Gatenby RA, Gillies RJ: Why do cancers have high aerobic glycolysis? Nature reviews. Cancer 2004, 4(11):891-899. Retrieved from http://apps.webofknowledge.com/full_record.do?product=WOS&search_mode=Refine&qid=3&SID=X2M@g31ED4CMOad4fJb&page=1&doc=2&cacheurlFromRightClick=no webcite
  • [70]Kroemer G, Pouyssegur J: Tumor cell metabolism: cancer’s Achilles' heel. Cancer Cell 2008, 13(6):472-482. Retrieved from http://apps.webofknowledge.com/full_record.do?product=WOS&search_mode=Refine&qid=3&SID=X2M@g31ED4CMOad4fJb&page=2&doc=13&cacheurlFromRightClick=no webcite
  • [71]Jain M, Nilsson R, Sharma S, Madhusudhan N, Kitami T, Souza AL, Kafri R, et al.: Metabolite profiling identifies a key role for glycine in rapid cancer cell proliferation. Science 2012, 336(6084):1040-1044.
  • [72]Schietinger A, Philip M, Schreiber H: Specificity in cancer immunotherapy. Semin Immunol 2008, 20(5):276-285. Retrieved from http://apps.webofknowledge.com/full_record.do?product=WOS&search_mode=Refine&qid=15&SID=X2M@g31ED4CMOad4fJb&page=1&doc=7&cacheurlFromRightClick=no webcite
  • [73]Gunawardana CG, Diamandis EP: High throughput proteomic strategies for identifying tumour-associated antigens. Cancer Lett 2007, 249(1):110-119. Retrieved from http://apps.webofknowledge.com/full_record.do?product=WOS&search_mode=Refine&qid=15&SID=X2M@g31ED4CMOad4fJb&page=1&doc=2&cacheurlFromRightClick=no webcite
  • [74]Mou Z, He Y, Wu Y: Immunoproteomics to identify tumor-associated antigens eliciting humoral response. Cancer Lett 2009, 278(2):123-129. Retrieved from http://apps.webofknowledge.com/full_record.do?product=WOS&search_mode=Refine&qid=15&SID=X2M@g31ED4CMOad4fJb&page=2&doc=11&cacheurlFromRightClick=no webcite
  • [75]Frosch M: NZB Mouse System for Production of Monoclonal Antibodies to Weak Bacterial Antigens: Isolation of an IgG Antibody to the Polysaccharide Capsules of Escherichia coli K1 and Group B Meningococci. Proc Natl Acad Sci 1985, 82(4):1194-1198.
  • [76]Lee S-Y, Jeoung D: The reverse proteomics for identification of tumor antigens. J Microbiol Biotechnol 2007, 17(6):879-890. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/18050904 webcite
  • [77]Miller RA, Maloney DG, Warnke R, Levy R: Treatment of B-cell lymphoma with monoclonal anti-idiotype antibody. N Eng J Med 1982, 306(9):517-522.
  • [78]Trepel M, Martens V, Doll C, Rahlff J, Gösch B, Loges S, Binder M: Phenotypic detection of clonotypic B cells in multiple myeloma by specific immunoglobulin ligands reveals their rarity in multiple myeloma. PLoS One 2012, 7(2):e31998. Retrieved from http://apps.webofknowledge.com/full_record.do?product=WOS&search_mode=GeneralSearch&qid=13&SID=Y1hGL3aBo2aHPf77I4n&page=1&doc=1&cacheurlFromRightClick=no webcite
  • [79]Carter P, Smith L, Ryan M: Identification and validation of cell surface antigens for antibody targeting in oncology. Endocr Relat Cancer 2004, 11(4):659-687. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/15613445 webcite
  • [80]Loo DT, Mather JP: Antibody-based identification of cell surface antigens: targets for cancer therapy. Curr Opin Pharmacol 2008, 8(5):627-631. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/18804182 webcite
  • [81]Cohen S, Cahan R, Ben-Dov E, Nisnevitch M, Zaritsky A, Firer MA: Specific targeting to murine myeloma cells of Cyt1Aa toxin from Bacillus thuringiensis subspecies israelensis. J Biol Chem 2007, 282(39):28301-28308. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/17626007 webcite
  • [82]Teicher BA: Antibody-drug conjugate targets. Curr Cancer Drug Targets 2009, 9(8):982-1004. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/20025606 webcite
  • [83]Gerber HP, Kung-Sutherland M, Stone I, Morris-Tilden C, Miyamoto J, McCormick R, Alley SC, et al.: Potent antitumor activity of the anti-CD19 auristatin antibody drug conjugate hBU12-vcMMAE against rituximab-sensitive and -resistant lymphomas. Blood 2009, 113(18):4352-4361. Retrieved from http://bloodjournal.hematologylibrary.org/cgi/content/abstract/113/18/4352 webcite
  • [84]Ingle GS, Chan P, Elliott JM, Chang WS, Koeppen H, Stephan J-P, Scales SJ: High CD21 expression inhibits internalization of anti-CD19 antibodies and cytotoxicity of an anti-CD19-drug conjugate. Br J Haematol 2008, 140(1):46-58. Retrieved from http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2228374&tool=pmcentrez&rendertype=abstract webcite
  • [85]Sapra P, Allen TM: Internalizing antibodies are necessary for improved therapeutic efficacy of antibody-targeted liposomal drugs. Cancer Res 2002, 62(24):7190-7194. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/12499256 webcite
  • [86]Rudnick SI, Lou J, Shaller CC, Tang Y, Klein-Szanto AJP, Weiner LM, Marks JD, et al.: Influence of affinity and antigen internalization on the uptake and penetration of Anti-HER2 antibodies in solid tumors. Cancer Res 2011, 71(6):2250-2259. Retrieved from http://apps.webofknowledge.com/full_record.do?product=WOS&search_mode=GeneralSearch&qid=6&SID=Z1ejIAcoO4b6EHJ7I3I&page=1&doc=2&cacheurlFromRightClick=no webcite
  • [87]Mould DR, Sweeney KRD: The pharmacokinetics and pharmacodynamics of monoclonal antibodies--mechanistic modeling applied to drug development. Curr Opin Drug Discov Devel 2007, 10(1):84-96. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/17265746 webcite
  • [88]Levêque D, Wisniewski S, Jehl F: Pharmacokinetics of therapeutic monoclonal antibodies used in oncology. Anticancer Res 2005, 25(3c):2327-2343. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/16080460 webcite
  • [89]Keizer RJ, Huitema ADR, Schellens JHM, Beijnen JH: Clinical pharmacokinetics of therapeutic monoclonal antibodies. Clin Pharmacokinet 2010, 49(8):493-507. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/20608753 webcite
  • [90]Casi G, Neri D: Antibody-drug conjugates: Basic concepts, examples and future perspectives. J Contr Release Offic J Contr Release Soc 2012, 161(2):422-428.
  • [91]Sun MMC, Beam KS, Cerveny CG, Hamblett KJ, Blackmore RS, Torgov MY, Handley FGM, et al.: Reduction-alkylation strategies for the modification of specific monoclonal antibody disulfides. Bioconjug Chem 2005, 16(5):1282-1290. Retrieved from http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2539111&tool=pmcentrez&rendertype=abstract webcite
  • [92]Ducry L, Stump B: Antibody-drug conjugates: linking cytotoxic payloads to monoclonal antibodies. Bioconjug Chem 2010, 21(1):5-13. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/19769391 webcite
  • [93]McDonagh CF, Turcott E, Westendorf L, Webster JB, Alley SC, Kim K, Andreyka J, et al.: Engineered antibody-drug conjugates with defined sites and stoichiometries of drug attachment. Protein Eng Des Sel 2006, 19(7):299-307. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/16644914 webcite
  • [94]Junutula JR, Raab H, Clark S, Bhakta S, Leipold DD, Weir S, Chen Y, et al.: Site-specific conjugation of a cytotoxic drug to an antibody improves the therapeutic index. Nat Biotechnol 2008, 26(8):925-932. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/18641636 webcite
  • [95]Hamblett KJ, Senter PD, Chace DF, Sun MMC, Lenox J, Cerveny CG, Kissler KM, et al.: Effects of drug loading on the antitumor activity of a monoclonal antibody drug conjugate. Clin Canc Res Offic J Am Assoc Canc Res 2004, 10(20):7063-7070. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/15501986 webcite
  • [96]Ackerman ME, Pawlowski D, Wittrup KD: Effect of antigen turnover rate and expression level on antibody penetration into tumor spheroids. Mol Cancer Ther 2008, 7(7):2233-2240. Retrieved from http://mct.aacrjournals.org/cgi/content/abstract/7/7/2233 webcite
  • [97]Lee CM, Tannock IF: The distribution of the therapeutic monoclonal antibodies cetuximab and trastuzumab within solid tumors. BMC Cancer 2010, 10(1):255. BioMed Central Full Text
  • [98]Tabrizi M, Bornstein GG, Suria H: Biodistribution mechanisms of therapeutic monoclonal antibodies in health and disease. AAPS J 2010, 12(1):33-43.
  • [99]Adams GP, Schier R, McCall AM, Simmons HH, Horak EM, Alpaugh RK, Marks JD, et al.: High Affinity Restricts the Localization and Tumor Penetration of Single-Chain Fv Antibody Molecules. Cancer Res 2001, 61(12):4750-4755.
  • [100]Vázquez-Rey M, Lang DA: Aggregates in monoclonal antibody manufacturing processes. Biotechnol Bioeng 2011, 108(7):1494-1508. Retrieved from http://apps.webofknowledge.com/full_record.do?product=WOS&search_mode=GeneralSearch&qid=9&SID=U1PO5IFOM9B@bA1EA5L&page=1&doc=4&cacheurlFromRightClick=no webcite
  • [101]Raju TS, Jordan RE: Galactosylation variations in marketed therapeutic antibodies. MAbs 2012., 4(3) Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/22531450 webcite
  • [102]Samaranayake H, Wirth T, Schenkwein D, Räty JK, Ylä-Herttuala S: Challenges in monoclonal antibody-based therapies. Ann Med 2009, 41(5):322-331. Retrieved from http://apps.webofknowledge.com/full_record.do?product=WOS&search_mode=GeneralSearch&qid=9&SID=U1PO5IFOM9B@bA1EA5L&page=2&doc=15&cacheurlFromRightClick=no webcite
  • [103]Winter G, Griffiths AD, Hawkins RE, Hoogenboom HR: Making antibodies by phage display technology. Annu Rev Immunol 1994, 12:433-455. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/8011287 webcite
  • [104]Thie H, Meyer T, Schirrmann T, Hust M, Dübel S: Phage display derived therapeutic antibodies. Curr Pharm Biotechnol 2008, 9(6):439-446. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/19075684 webcite
  • [105]Molek P, Strukelj B, Bratkovic T: Peptide phage display as a tool for drug discovery: targeting membrane receptors. Mol (Basel, Switzerland) 2011, 16(1):857-887.
  • [106]Dantas-Barbosa C, de Macedo Brigido M, Maranhao AQ: Antibody phage display libraries: contributions to oncology. Int J Mol Sci 2012, 13(5):5420-5440. Retrieved from http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3382779&tool=pmcentrez&rendertype=abstract webcite
  • [107]Miersch S, Sidhu SS: Synthetic antibodies: Concepts, potential and practical considerations. Meth (San Diego, Calif) 2012. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/22750306 webcite
  • [108]Zhou Y, Marks JD: Discovery of internalizing antibodies to tumor antigens from phage libraries. Methods Enzymol 2012, 502:43-66. Retrieved from http://apps.webofknowledge.com.mgs-ariel.macam.ac.il/full_record.do?product=WOS&search_mode=Refine&qid=3&SID=Y2nn6f41cK8j6d4n7i3&page=1&doc=2&cacheurlFromRightClick=no webcite
  • [109]Aina OH, Liu R, Sutcliffe JL, Marik J, Pan C, Lam KS: Reviews From Combinatorial Chemistry to Cancer-Targeting. Mol Pharm 2007, 4(5):631-651.
  • [110]Denholt CL, Hansen PR, Pedersen N, Poulsen HS, Gillings N, Kjaer A: Identification of novel peptide ligands for the cancer-specific receptor mutation EFGRvIII using a mixture-based synthetic combinatorial library. Biopolymers 2009, 91(3):201-206. Retrieved from http://apps.webofknowledge.com.mgs-ariel.macam.ac.il/full_record.do?product=WOS&search_mode=GeneralSearch&qid=9&SID=Y2nn6f41cK8j6d4n7i3&page=1&doc=3&cacheurlFromRightClick=no webcite
  • [111]Kim M, Shin D-S, Kim J, Lee YS: Substrate screening of protein kinases: detection methods and combinatorial peptide libraries. Biopolymers 2010, 94(6):753-762. Retrieved from http://apps.webofknowledge.com.mgs-ariel.macam.ac.il/full_record.do?product=WOS&search_mode=GeneralSearch&qid=9&SID=Y2nn6f41cK8j6d4n7i3&page=1&doc=6&cacheurlFromRightClick=no webcite
  • [112]Li J, Tan S, Chen X, Zhang CY, Zhang Y: Peptide aptamers with biological and therapeutic applications. Curr Med Chem 2011, 18(27):4215-4222. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/21838684 webcite
  • [113]Pirogova E, Istivan T, Gan E, Cosic I: Advances in methods for therapeutic peptide discovery, design and development. Curr Pharm Biotechnol 2011, 12(8):1117-1127. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/21470146 webcite
  • [114]Bellmann-Sickert K, Beck-Sickinger AG: Peptide drugs to target G protein-coupled receptors. Trends Pharmacol Sci 2010, 31(9):434-441.
  • [115]Kurzrock R, Gabrail N, Chandhasin C, Moulder S, Smith C, Brenner A, Sankhala K, et al.: Safety, pharmacokinetics, and activity of GRN1005, a novel conjugate of angiopep-2, a peptide facilitating brain penetration, and paclitaxel, in patients with advanced solid tumors. Mol Canc Ther 2012, 11(2):308-316. Retrieved from http://apps.webofknowledge.com/full_record.do?product=WOS&search_mode=GeneralSearch&qid=9&SID=T2gMNeDBgeK5kmJmOL5&page=1&doc=1&cacheurlFromRightClick=no webcite
  • [116]Dhar S, Kolishetti N, Lippard SJ, Farokhzad OC: Targeted delivery of a cisplatin prodrug for safer and more effective prostate cancer therapy in vivo. Proc Natl Acad Sci USA 2011, 108(5):1850-1855. Retrieved from http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3033286&tool=pmcentrez&rendertype=abstract webcite
  • [117]Tai W, Shukla RS, Qin B, Li B, Cheng K: Development of a peptide-drug conjugate for prostate cancer therapy. Mol Pharm 2011, 8(3):901-912. Retrieved from http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3163154&tool=pmcentrez&rendertype=abstract webcite
  • [118]Karjalainen K, Jaalouk DE, Bueso-Ramos CE, Zurita AJ, Kuniyasu A, Eckhardt BL, Marini FC, et al.: Targeting neuropilin-1 in human leukemia and lymphoma. Blood 2011, 117(3):920-927.
  • [119]Schally AV, Engel JB, Emons G, Block NL, Pinski J: Use of analogs of peptide hormones conjugated to cytotoxic radicals for chemotherapy targeted to receptors on tumors. Curr Drug Deliv 2011, 8(1):11-25. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/21034424 webcite
  • [120]Majumdar S, Siahaan TJ: Peptide-mediated targeted drug delivery. Med Res Rev 2012, 32(3):637-658.
  • [121]Otvos L: Peptide-based drug design: here and now. Meth Mol Biol (Clifton, N.J) 2008, 494:1-8.
  • [122]van Zutphen S, Robillard MS, van der Marel GA, Overkleeft HS, den Dulk H, Brouwer J, Reedijk J: Extending solid-phase methods in inorganic synthesis: the first dinuclear platinum complex synthesised via the solid phase. Chem Commun (Camb) 2003, (5):634-635. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/12669861 webcite
  • [123]Pakkala M, Hekim C, Soininen P, Leinonen J, Koistinen H, Weisell J, Stenman U-H, et al.: Activity and stability of human kallikrein-2-specific linear and cyclic peptide inhibitors. J Pept Sci Offic Publ Eur Pept Soc 2007, 13(5):348-353.
  • [124]Clark RJ, Craik DJ: Engineering cyclic peptide toxins. Meth Enzymol 2012, 503:57-74.
  • [125]Lu Y, Yang J, Sega E: Issues related to targeted delivery of proteins and peptides. AAPS J 2006, 8(3):E466-E478.
  • [126]Sharman W: Targeted photodynamic therapy via receptor mediated delivery systems. Adv Drug Deliv Rev 2004, 56(1):53-76. Retrieved from http://dx.doi.org/10.1016/j.addr.2003.08.015 webcite
  • [127]Li H, Qian ZM: Transferrin/transferrin receptor-mediated drug delivery. Med Res Rev 2002, 22(3):225-250. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/11933019 webcite
  • [128]Daniels TR, Bernabeu E, Rodríguez JA, Patel S, Kozman M, Chiappetta DA, Holler E, et al.: The transferrin receptor and the targeted delivery of therapeutic agents against cancer. Biochim Biophys Acta 2012, 1820(3):291-317. Retrieved from http://apps.webofknowledge.com/full_record.do?product=WOS&search_mode=Refine&qid=4&SID=N1kMhGPnDfGo@3EINjI&page=1&doc=4&cacheurlFromRightClick=no webcite
  • [129]Yoon DJ, Liu CT, Quinlan DS, Nafisi PM, Kamei DT: Intracellular trafficking considerations in the development of natural ligand-drug molecular conjugates for cancer. Ann Biomed Eng 2011, 39(4):1235-1251. Retrieved from http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3069328&tool=pmcentrez&rendertype=abstract webcite
  • [130]Duncan R, Richardson SCW: Endocytosis and Intracellular Trafficking as Gateways for Nanomedicine Delivery: Opportunities and Challenges. Mol Pharm 2012. Retrieved from http://dx.doi.org/10.1021/mp300293n webcite
  • [131]Meyer-Losic F, Quinonero J, Dubois V, Alluis B, Dechambre M, Michel M, Cailler F, et al.: Improved therapeutic efficacy of doxorubicin through conjugation with a novel peptide drug delivery technology (Vectocell). J Med Chem 2006, 49(23):6908-6916. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/17154520 webcite
  • [132]Hong FD, Clayman GL: Isolation of a peptide for targeted drug delivery into human head and neck solid tumors. Canc Res 2000, 60(23):6551-6556. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/11118031 webcite
  • [133]Flessner MF, Choi J, Credit K, Deverkadra R, Henderson K: Resistance of tumor interstitial pressure to the penetration of intraperitoneally delivered antibodies into metastatic ovarian tumors. Clin Canc Res Offic J Am Assoc Canc Res 2005, 11(8):3117-3125. Retrieved from http://clincancerres.aacrjournals.org/cgi/content/abstract/11/8/3117 webcite
  • [134]Heine M, Freund B, Nielsen P, Jung C, Reimer R, Hohenberg H, Zangemeister-Wittke U, et al.: High interstitial fluid pressure is associated with low tumour penetration of diagnostic monoclonal antibodies applied for molecular imaging purposes. (M. Ho, Ed.). PLoS One 2012, 7(5):e36258. Retrieved from http://dx.plos.org/10.1371/journal.pone.0036258 webcite
  • [135]Roth L, Agemy L, Kotamraju VR, Braun G, Teesalu T, Sugahara KN, Hamzah J, et al.: Transtumoral targeting enabled by a novel neuropilin-binding peptide. Oncogene 2011. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/22179825 webcite
  • [136]Corti A, Pastorino F, Curnis F, Arap W, Ponzoni M, Pasqualini R: Targeted Drug Delivery and Penetration Into Solid Tumors. Med Res Rev 2011, 32(5):1078-1091.
  • [137]Nascimento FD, Sancey L, Pereira A, Rome C, Oliveira V, Oliveira EB, Nader HB, et al.: The natural cell-penetrating peptide crotamine targets tumor tissue in vivo and triggers a lethal calcium-dependent pathway in cultured cells. Mol Pharm 2012, 9(2):211-221. Retrieved from http://apps.webofknowledge.com.mgs-ariel.macam.ac.il/full_record.do?product=WOS&search_mode=GeneralSearch&qid=13&SID=Z27Mm17en7OkOBJcCh7&page=1&doc=2&cacheurlFromRightClick=no webcite
  • [138]Sarko D, Beijer B, Garcia Boy R, Nothelfer E-M, Leotta K, Eisenhut M, Altmann A, et al.: The pharmacokinetics of cell-penetrating peptides. Mol Pharm 2010, 7(6):2224-2231. Retrieved from http://apps.webofknowledge.com.mgs-ariel.macam.ac.il/full_record.do?product=WOS&search_mode=GeneralSearch&qid=13&SID=Z27Mm17en7OkOBJcCh7&page=1&doc=3&cacheurlFromRightClick=no webcite
  • [139]Myrberg H, Zhang L, Mäe M, Langel U: Design of a tumor-homing cell-penetrating peptide. Bioconjug Chem 2008, 19(1):70-75. Retrieved from http://apps.webofknowledge.com.mgs-ariel.macam.ac.il/full_record.do?product=WOS&search_mode=GeneralSearch&qid=13&SID=Z27Mm17en7OkOBJcCh7&page=1&doc=9&cacheurlFromRightClick=no webcite
  • [140]Takara K, Hatakeyama H, Ohga N, Hida K, Harashima H: Design of a dual-ligand system using a specific ligand and cell penetrating peptide, resulting in a synergistic effect on selectivity and cellular uptake. Int J Pharm 2010, 396(1–2):143-148. Retrieved from http://apps.webofknowledge.com.mgs-ariel.macam.ac.il/full_record.do?product=WOS&search_mode=GeneralSearch&qid=13&SID=Z27Mm17en7OkOBJcCh7&page=1&doc=5&cacheurlFromRightClick=no webcite
  • [141]Bolhassani A: Potential efficacy of cell-penetrating peptides for nucleic acid and drug delivery in cancer. Biochim Biophys Acta 2011, 1816(2):232-246. Retrieved from http://apps.webofknowledge.com.mgs-ariel.macam.ac.il/full_record.do?product=WOS&search_mode=GeneralSearch&qid=13&SID=Z27Mm17en7OkOBJcCh7&page=1&doc=6&cacheurlFromRightClick=no webcite
  • [142]Zaro JL, Fei L, Shen W-C: Recombinant peptide constructs for targeted cell penetrating peptide-mediated delivery. J Contr Release Offic J Contr Release Soc 2012, 158(3):357-361. Retrieved from http://apps.webofknowledge.com.mgs-ariel.macam.ac.il/full_record.do?product=WOS&search_mode=GeneralSearch&qid=13&SID=Z27Mm17en7OkOBJcCh7&page=1&doc=10&cacheurlFromRightClick=no webcite
  • [143]Bruckdorfer T, Marder O, Albericio F: From production of peptides in milligram amounts for research to multi-tons quantities for drugs of the future. Curr Pharm Biotechnol 2004, 5(1):29-43. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/14965208 webcite
  • [144]Thayer A: Making peptides at large scale. Chem Eng News 2011, 89(22):81-85.
  • [145]Otvos L (Ed): Methods in Molecular Biology: Peptide-based drug design. (L Otvos, Ed.). Human Press; 2008.
  • [146]Hallam T, Murray C: Protein Engineering. Biopharm Int 2011, 50-54.
  • [147]Vlieghe P, Lisowski V, Martinez J, Khrestchatisky M: Synthetic therapeutic peptides: science and market. Drug Discov Today 2010, 15(1–2):40-56.
  • [148]Vrielink J, Heins MS, Setroikromo R, Szegezdi E, Mullally MM, Samali A, Quax WJ: Synthetic constrained peptide selectively binds and antagonizes death receptor 5. FEBS J 2010, 277(7):1653-1665.
  文献评价指标  
  下载次数:20次 浏览次数:24次