Journal for ImmunoTherapy of Cancer | |
Tumor immunology and cancer immunotherapy: summary of the 2014 SITC primer | |
Margaret K. Callahan1  Padmanee Sharma2  Willem W. Overwijk2  Alexander N. Shoushtari1  Samuel Funt1  Danny N. Khalil1  Claire Friedman1  Melody Smith1  Eric Smith1  Jarushka Naidoo1  Anthony Daniyan1  Ariel Bulua Bourla1  David B. Page1  | |
[1] Memorial Sloan Kettering Cancer Center, 300 E 66th Street, BAIC 813, New York, 10065, NY, USA;MD Anderson Cancer Center, Houston, TX, USA | |
关键词: Primer; SITC; Pembrolizumab; Ipilimumab; Nivolumab; Adoptive therapy; Vaccine; Lung cancer; Bladder cancer; Kidney cancer; Prostate cancer; Melanoma; PD-L1; PD-1; CTLA4; | |
Others : 1213934 DOI : 10.1186/s40425-015-0072-2 |
|
received in 2015-04-29, accepted in 2015-05-18, 发布年份 2015 | |
【 摘 要 】
The pioneers of tumor immunology and cancer immunotherapy, including the late William B. Coley and Lloyd J. Old, have championed the potential for immunotherapy for over a century. Finally, advances in our understanding of the fundamentals of tumor immunology are translating into clinical success, with recent US Food and Drug Administration approval of several immunotherapies that improve clinical outcomes across prostate cancer, metastatic melanoma, non-small cell lung cancer and lymphocytic leukemia. In tandem with these clinical successes, new technologies such as high-throughput DNA/RNA sequencing, genetic engineering, and streamlined ex vivo cell culturing have paved the way for the next generation of immunotherapies and provided new tools for investigating potential biomarkers of response to existing therapies. During the November 2014 Annual Meeting of the Society of the Immunotherapy of Cancer, leaders in tumor immunology and cancer immunotherapy convened at the second annual SITC Primer to review both current knowledge and future directions in the field. Here, we will review the key discussions across a variety of topics, including innate immunity, adaptive immunity, dendritic cells, adoptive T cell therapy, anti-tumor antibodies, cancer vaccines, immune checkpoint blockade, challenges to immunotherapy, monitoring immune responses, and immunotherapy clinical trial design.
【 授权许可】
2015 Page et al.
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
20150617091843942.pdf | 467KB | download |
【 参考文献 】
- [1]Guo ZS, Liu Z, Bartlett DL, Tang D, Lotze MT. Life after death: targeting high mobility group box 1 in emergent cancer therapies. Am J Cancer Res. 2013; 3:1-20.
- [2]Murray PJ, Allen JE, Biswas SK, Fisher EA, Gilroy DW, Goerdt S et al.. Macrophage activation and polarization: nomenclature and experimental guidelines. Immunity. 2014; 41:14-20.
- [3]Noy R, Pollard JW. Tumor-associated macrophages: from mechanisms to therapy. Immunity. 2014; 41:49-61.
- [4]Spits H, Cupedo T. Innate lymphoid cells: emerging insights in development, lineage relationships, and function. Annu Rev Immunol. 2012; 30:647-75.
- [5]Gagliani N, Hu B, Huber S, Elinav E, Flavell RA. The fire within: microbes inflame tumors. Cell. 2014; 157:776-83.
- [6]Ricklin D, Hajishengallis G, Yang K, Lambris JD. Complement: a key system for immune surveillance and homeostasis. Nat Immunol. 2010; 11:785-97.
- [7]Klechevsky E, Morita R, Liu M, Cao Y, Coquery S, Thompson-Snipes L et al.. Functional specializations of human epidermal Langerhans cells and CD14+ dermal dendritic cells. Immunity. 2008; 29:497-510.
- [8]Pulendran B, Ahmed R. Translating innate immunity into immunological memory: implications for vaccine development. Cell. 2006; 124:849-63.
- [9]Kantoff PW, Higano CS, Shore ND, Berger ER, Small EJ, Penson DF et al.. Sipuleucel-T immunotherapy for castration-resistant prostate cancer. N Engl J Med. 2010; 363:411-22.
- [10]Murphy K TP, Walport M. Janeway’s Immunobiology. Janeway’s Immunobiology: Garland Science; 2007
- [11]Alam R, Gorska M. 3. Lymphocytes. J Allergy Clin Immunol. 2003; 111:S476-85.
- [12]Pardoll DM. The blockade of immune checkpoints in cancer immunotherapy. Nat Rev Cancer. 2012; 12:252-64.
- [13]O’Shea JJ, Paul WE. Mechanisms underlying lineage commitment and plasticity of helper CD4+ T cells. Sci (New York, NY). 2010; 327:1098-102.
- [14]Porter DL, Levine BL, Kalos M, Bagg A, June CH. Chimeric antigen receptor-modified T cells in chronic lymphoid leukemia. N Engl J Med. 2011; 365:725-33.
- [15]Kalos M, Levine BL, Porter DL, Katz S, Grupp SA, Bagg A et al.. T cells with chimeric antigen receptors have potent antitumor effects and can establish memory in patients with advanced leukemia. Sci Transl Med. 2011; 3:95ra73.
- [16]Maude SL, Frey N, Shaw PA, Aplenc R, Barrett DM, Bunin NJ et al.. Chimeric antigen receptor T cells for sustained remissions in leukemia. N Engl J Med. 2014; 371:1507-17.
- [17]Linette GP, Stadtmauer EA, Maus MV, Rapoport AP, Levine BL, Emery L et al.. Cardiovascular toxicity and titin cross-reactivity of affinity-enhanced T cells in myeloma and melanoma. Blood. 2013; 122:863-71.
- [18]Cameron BJ, Gerry AB, Dukes J, Harper JV, Kannan V, Bianchi FC et al.. Identification of a Titin-derived HLA-A1-presented peptide as a cross-reactive target for engineered MAGE A3-directed T cells. Sci Transl Med. 2013; 5:197ra03.
- [19]Morgan RA, Chinnasamy N, Abate-Daga D, Gros A, Robbins PF, Zheng Z et al.. Cancer regression and neurological toxicity following anti-MAGE-A3 TCR gene therapy. J Immunother. 2013; 36:133-51.
- [20]Strebhardt K, Ullrich A. Paul Ehrlich’s magic bullet concept: 100 years of progress. Nat Rev Cancer. 2008; 8:473-80.
- [21]Jaglowski SM, Alinari L, Lapalombella R, Muthusamy N, Byrd JC. The clinical application of monoclonal antibodies in chronic lymphocytic leukemia. Blood. 2010; 116:3705-14.
- [22]Golay J, Da Roit F, Bologna L, Ferrara C, Leusen JH, Rambaldi A et al.. Glycoengineered CD20 antibody obinutuzumab activates neutrophils and mediates phagocytosis through CD16B more efficiently than rituximab. Blood. 2013; 122:3482-91.
- [23]Verma S, Miles D, Gianni L, Krop IE, Welslau M, Baselga J et al.. Trastuzumab emtansine for HER2-positive advanced breast cancer. N Engl J Med. 2012; 367:1783-91.
- [24]Topp MS, Gokbuget N, Zugmaier G, Klappers P, Stelljes M, Neumann S et al.. Phase II trial of the anti-CD19 bispecific T cell-engager blinatumomab shows hematologic and molecular remissions in patients with relapsed or refractory B-precursor acute lymphoblastic leukemia. J Clin Oncol. 2014; 32:4134-40.
- [25]Schreiber RD, Old LJ, Smyth MJ. Cancer immunoediting: integrating immunity’s roles in cancer suppression and promotion. Science. 2011; 331:1565-70.
- [26]Oleinika K, Nibbs RJ, Graham GJ, Fraser AR. Suppression, subversion and escape: the role of regulatory T cells in cancer progression. Clin Exp Immunol. 2013; 171:36-45.
- [27]Simpson TR, Li F, Montalvo-Ortiz W, Sepulveda MA, Bergerhoff K, Arce F et al.. Fc-dependent depletion of tumor-infiltrating regulatory T cells co-defines the efficacy of anti-CTLA-4 therapy against melanoma. J Exp Med. 2013; 210:1695-710.
- [28]Lindau D, Gielen P, Kroesen M, Wesseling P, Adema GJ. The immunosuppressive tumour network: myeloid-derived suppressor cells, regulatory T cells and natural killer T cells. Immunology. 2013; 138:105-15.
- [29]Kitano S, Postow MA, Ziegler CG, Kuk D, Panageas KS, Cortez C et al.. Computational algorithm-driven evaluation of monocytic myeloid-derived suppressor cell frequency for prediction of clinical outcomes. Cancer Immunol Res. 2014; 2:812-21.
- [30]Cook J, Hagemann T. Tumour-associated macrophages and cancer. Curr Opin Pharmacol. 2013; 13:595-601.
- [31]Feig C, Jones JO, Kraman M, Wells RJ, Deonarine A, Chan DS et al.. Targeting CXCL12 from FAP-expressing carcinoma-associated fibroblasts synergizes with anti-PD-L1 immunotherapy in pancreatic cancer. Proc Natl Acad Sci U S A. 2013; 110:20212-7.
- [32]Hailemichael Y, Dai Z, Jaffarzad N, Ye Y, Medina MA, Huang XF et al.. Persistent antigen at vaccination sites induces tumor-specific CD8(+) T cell sequestration, dysfunction and deletion. Nat Med. 2013; 19:465-72.
- [33]Schwartz RH. Costimulation of T lymphocytes: the role of CD28, CTLA-4, and B7/BB1 in interleukin-2 production and immunotherapy. Cell. 1992; 71:1065-8.
- [34]Leach DR, Krummel MF, Allison JP. Enhancement of antitumor immunity by CTLA-4 blockade. Science. 1996; 271:1734-6.
- [35]Hodi FS, O’Day SJ, McDermott DF, Weber RW, Sosman JA, Haanen JB et al.. Improved survival with ipilimumab in patients with metastatic melanoma. N Engl J Med. 2010; 363:711-23.
- [36]Schadendorf D, Hodi FS, Robert C, Weber JS, Margolin K, Hamid O, et al. Pooled Analysis of Long-Term Survival Data From Phase II and Phase III Trials of Ipilimumab in Unresectable or Metastatic Melanoma. J Clin Oncol 2015. [Epub ahead of print] PMID: 25667295
- [37]Weber JS, Kahler KC, Hauschild A. Management of immune-related adverse events and kinetics of response with ipilimumab. J Clin Oncol. 2012; 30:2691-7.
- [38]Freeman GJ, Long AJ, Iwai Y, Bourque K, Chernova T, Nishimura H et al.. Engagement of the PD-1 immunoinhibitory receptor by a novel B7 family member leads to negative regulation of lymphocyte activation. J Exp Med. 2000; 192:1027-34.
- [39]Robert C, Long GV, Brady B, Dutriaux C, Maio M, Mortier L, et al. Nivolumab in Previously Untreated Melanoma without BRAF Mutation. N Engl J Med. 2015;372(4):320-30. doi:10.1056/NEJMoa1412082. Epub 2014 Nov 16.PMID:25399552.
- [40]Robert C, Ribas A, Wolchok JD, Hodi FS, Hamid O, Kefford R et al.. Anti-programmed-death-receptor-1 treatment with pembrolizumab in ipilimumab-refractory advanced melanoma: a randomised dose-comparison cohort of a phase 1 trial. Lancet. 2014; 384:1109-17.
- [41]Curran MA, Montalvo W, Yagita H, Allison JP. PD-1 and CTLA-4 combination blockade expands infiltrating T cells and reduces regulatory T and myeloid cells within B16 melanoma tumors. Proc Natl Acad Sci U S A. 2010; 107:4275-80.
- [42]Sznol M, Kluger HM, Callahan MK, Postow MA, Gordon RA, Segal NH et al.. Survival, response duration, and activity by BRAF mutation (MT) status of nivolumab (NIVO, anti-PD-1, BMS-936558, ONO-4538) and ipilimumab (IPI) concurrent therapy in advanced melanoma (MEL). ASCO Meeting Abstracts. 2014; 32:LBA9003.
- [43]Wolchok JD, Kluger H, Callahan MK, Postow MA, Rizvi NA, Lesokhin AM, et al. Nivolumab plus Ipilimumab in Advanced Melanoma. N Engl J Med 2013;369(2):122–33 PMID:23724867.
- [44]Yuan J, Adamow M, Ginsberg BA, Rasalan TS, Ritter E, Gallardo HF et al.. Integrated NY-ESO-1 antibody and CD8+ T-cell responses correlate with clinical benefit in advanced melanoma patients treated with ipilimumab. Proc Natl Acad Sci U S A. 2011; 108:16723-8.
- [45]Gnjatic S, Ritter E, Buchler MW, Giese NA, Brors B, Frei C et al.. Seromic profiling of ovarian and pancreatic cancer. Proc Natl Acad Sci U S A. 2010; 107:5088-93.
- [46]Germain C, Gnjatic S, Tamzalit F, Knockaert S, Remark R, Goc J et al.. Presence of B cells in tertiary lymphoid structures is associated with a protective immunity in patients with lung cancer. Am J Respir Crit Care Med. 2014; 189:832-44.
- [47]Dieu-Nosjean MC, Antoine M, Danel C, Heudes D, Wislez M, Poulot V et al.. Long-term survival for patients with non-small-cell lung cancer with intratumoral lymphoid structures. J Clin Oncol. 2008; 26:4410-7.
- [48]Ng Tang D, Shen Y, Sun J, Wen S, Wolchok JD, Yuan J et al.. Increased frequency of ICOS+ CD4 T cells as a pharmacodynamic biomarker for anti-CTLA-4 therapy. Cancer Immunol Res. 2013; 1:229-34.
- [49]Fridman WH, Pages F, Sautes-Fridman C, Galon J. The immune contexture in human tumours: impact on clinical outcome. Nat Rev Cancer. 2012; 12:298-306.
- [50]Pages F, Kirilovsky A, Mlecnik B, Asslaber M, Tosolini M, Bindea G et al.. In situ cytotoxic and memory T cells predict outcome in patients with early-stage colorectal cancer. J Clin Oncol. 2009; 27:5944-51.
- [51]Bindea G, Mlecnik B, Tosolini M, Kirilovsky A, Waldner M, Obenauf AC et al.. Spatiotemporal dynamics of intratumoral immune cells reveal the immune landscape in human cancer. Immunity. 2013; 39:782-95.
- [52]Chattopadhyay PK, Gierahn TM, Roederer M, Love JC. Single-cell technologies for monitoring immune systems. Nat Immunol. 2014; 15:128-35.
- [53]Butterfield LH, Disis ML, Fox BA, Khleif SN, Marincola FM. Preamble to the 2015 SITC immunotherapy biomarkers taskforce. J Immunother Cancer 2015;3:8.
- [54]Fan X, Quezada SA, Sepulveda MA, Sharma P, Allison JP. Engagement of the ICOS pathway markedly enhances efficacy of CTLA-4 blockade in cancer immunotherapy. J Exp Med 2014;211(4): 715-725.
- [55]Liakou CI, Kamat A, Tang DN, Chen H, Sun J, Troncoso P, et al. CTLA-4 blockade increases IFNgamma-producing CD4+ICOShi cells to shift the ratio of effector to regulatory T cells in cancer patients. Proc Natl Acad Sci U S A 2008;105(39):14987-14992.
- [56]Fu T, He Q, Sharma P. The ICOS/ICOSL pathway is required for optimal antitumor responses mediated by anti-CTLA-4 therapy. Cancer Res. 2011; 71:5445-54.
- [57]Chen H, Fu T, Suh WK, Tsavachidou D, Wen S, Gao J, et al. CD4 T cells require ICOS-mediated PI3K signaling to increase T-Bet expression in the setting of anti-CTLA-4 therapy. Cancer Immunol Res. 2014;2:167–76.
- [58]Kaufman HL, Kirkwood JM, Hodi FS, Agarwala S, Amatruda T, Bines SD, et al. The Society for Immunotherapy of Cancer consensus statement on tumour immunotherapy for the treatment of cutaneous melanoma. Nat Rev Clin Oncol 2013;10(10):588-598.
- [59]Fox BA, Schendel DJ, Butterfield LH, Aamdal S, Allison JP, Ascierto PA, et al. Defining the critical hurdles in cancer immunotherapy. J Transl Med 2011;9: 214.