期刊论文详细信息
Journal of Translational Medicine
Systems level mapping of metabolic complexity in Mycobacterium tuberculosis to identify high-value drug targets
Samir K Brahmachari1  OSDD Consortium1  Anshu Bhardwaj3  Shreeram Kushwaha3  Ashwini G Bhat3  Rohit Vashisht2 
[1] CSIR - Institute of Genomics and Integrative Biology, New Delhi, India;Academy of Scientific and Innovative Research, New Delhi, India;CSIR-Open Source Drug Discovery Unit, New Delhi, India
关键词: Metabolic persister genes;    Mathematical modeling;    Bacterial persistence;    Complexity;    Systems biology spindle map;   
Others  :  1147690
DOI  :  10.1186/s12967-014-0263-5
 received in 2014-07-31, accepted in 2014-09-11,  发布年份 2014
PDF
【 摘 要 】

Background

The effectiveness of current therapeutic regimens for Mycobacterium tuberculosis (Mtb) is diminished by the need for prolonged therapy and the rise of drug resistant/tolerant strains. This global health threat, despite decades of basic research and a wealth of legacy knowledge, is due to a lack of systems level understanding that can innovate the process of fast acting and high efficacy drug discovery.

Methods

The enhanced functional annotations of the Mtb genome, which were previously obtained through a crowd sourcing approach was used to reconstruct the metabolic network of Mtb in a bottom up manner. We represent this information by developing a novel Systems Biology Spindle Map of Metabolism (SBSM) and comprehend its static and dynamic structure using various computational approaches based on simulation and design.

Results

The reconstructed metabolism of Mtb encompasses 961 metabolites, involved in 1152 reactions catalyzed by 890 protein coding genes, organized into 50 pathways. By accounting for static and dynamic analysis of SBSM in Mtb we identified various critical proteins required for the growth and survival of bacteria. Further, we assessed the potential of these proteins as putative drug targets that are fast acting and less toxic. Further, we formulate a novel concept of metabolic persister genes (MPGs) and compared our predictions with published in vitro and in vivo experimental evidence. Through such analyses, we report for the first time that de novo biosynthesis of NAD may give rise to bacterial persistence in Mtb under conditions of metabolic stress induced by conventional anti-tuberculosis therapy. We propose such MPG¿s as potential combination of drug targets for existing antibiotics that can improve their efficacy and efficiency for drug tolerant bacteria.

Conclusion

The systems level framework formulated by us to identify potential non-toxic drug targets and strategies to circumvent the issue of bacterial persistence can substantially aid in the process of TB drug discovery and translational research.

【 授权许可】

   
2014 Vashisht et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150404032513758.pdf 7167KB PDF download
Figure 6. 89KB Image download
Figure 5. 103KB Image download
Figure 4. 82KB Image download
Figure 3. 104KB Image download
Figure 2. 71KB Image download
Figure 1. 69KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

【 参考文献 】
  • [1]Lander ES: Initial impact of the sequencing of the human genome. Nature 2011, 470:187-197.
  • [2]Brahmachari S: Introducing the medical bioinformatics in Journal of Translational Medicine. J Transl Med 2012, 10:202. BioMed Central Full Text
  • [3]Paulson T: Epidemiology: a mortal foe. Nature 2013, 502:S2-S3.
  • [4]Gandhi NR, Nunn P, Dheda K, Schaaf HS, Zignol M, van Soolingen D, Jensen P, Bayona J: Multidrug-resistant and extensively drug-resistant tuberculosis: a threat to global control of tuberculosis. Lancet 2010, 375:1830-1843.
  • [5]Scully T: Tuberculosis. Nature 2013, 502:S1-S1.
  • [6]Casali N, Nikolayevskyy V, Balabanova Y, Harris SR, Ignatyeva O, Kontsevaya I, Corander J, Bryant J, Parkhill J, Nejentsev S, Horstmann RD, Brown T, Drobniewski F: Evolution and transmission of drug-resistant tuberculosis in a Russian population. Nat Genet 2014, 46:279-286.
  • [7]Farhat MR, Shapiro BJ, Kieser KJ, Sultana R, Jacobson KR, Victor TC, Warren RM, Streicher EM, Calver A, Sloutsky A, Kaur D, Posey JE, Plikaytis B, Oggioni MR, Gardy JL, Johnston JC, Rodrigues M, Tang PKC, Kato-Maeda M, Borowsky ML, Muddukrishna B, Kreiswirth BN, Kurepina N, Galagan J, Gagneux S, Birren B, Rubin EJ, Lander ES, Sabeti PC, Murray M: Genomic analysis identifies targets of convergent positive selection in drug-resistant Mycobacterium tuberculosis. Nat Genet 2013, 45:1183-1189.
  • [8]Safi H, Lingaraju S, Amin A, Kim S, Jones M, Holmes M, McNeil M, Peterson SN, Chatterjee D, Fleischmann R, Alland D: Evolution of high-level ethambutol-resistant tuberculosis through interacting mutations in decaprenylphosphoryl-[beta]-D-arabinose biosynthetic and utilization pathway genes. Nat Genet 2013, 45:1190-1197.
  • [9]Zhang H, Li D, Zhao L, Fleming J, Lin N, Wang T, Liu Z, Li C, Galwey N, Deng J, Zhou Y, Zhu Y, Gao Y, Wang T, Wang S, Huang Y, Wang M, Zhong Q, Zhou L, Chen T, Zhou J, Yang R, Zhu G, Hang H, Zhang J, Li F, Wan K, Wang J, Zhang XE, Bi L: Genome sequencing of 161 Mycobacterium tuberculosis isolates from China identifies genes and intergenic regions associated with drug resistance. Nat Genet 2013, 45:1255-1260.
  • [10]Balaban NQ, Merrin J, Chait R, Kowalik L, Leibler S: Bacterial persistence as a phenotypic switch. Science 2004, 305:1622-1625.
  • [11]Cohen NR, Lobritz MA, Collins JJ: Microbial persistence and the road to drug resistance. Cell Host Microbe 2013, 13:632-642.
  • [12]Lewis K: Persister cells. Annu Rev Microbiol 2010, 64:357-372.
  • [13]Nikaido H: Multidrug resistance in bacteria. Annu Rev Biochem 2009, 78:119-146.
  • [14]Andersson DI, Hughes D: Gene amplification and adaptive evolution in bacteria. Annu Rev Genet 2009, 43:167-195.
  • [15]Jacoby GA: Mechanisms of resistance to quinolones. Clin Infect Dis 2005, 41:S120-S126.
  • [16]Robicsek A, Strahilevitz J, Jacoby GA, Macielag M, Abbanat D, Hye Park C, Bush K, Hooper DC: Fluoroquinolone-modifying enzyme: a new adaptation of a common aminoglycoside acetyltransferase. Nat Med 2006, 12:83-88.
  • [17]Antimicrobial Resistance Global Report on Surveillance. World Health Organization, France; 2014.
  • [18]Szlezak N, Evers M, Wang J, Perez L: The role of big data and advanced analytics in drug discovery, development, and commercialization. Clin Pharmacol Ther 2014, 95:492-495.
  • [19]Bhardwaj A, Scaria V, Raghava GP, Lynn AM, Chandra N, Banerjee S, Raghunandanan MV, Pandey V, Taneja B, Yadav J, Dash D, Bhattacharya J, Misra A, Kumar A, Ramachandran S, Thomas Z, Brahmachari SK: Open source drug-discovery - A new paradigm of collaborative research in tuberculosis drug development. Tuberculosis (Edinb) 2011, 91(5):479-486.
  • [20]Singh S: India takes an open source approach to drug discovery. Cell 2008, 133:201-203.
  • [21]Vashisht R, Bhardwaj A, Consortium O, Brahmachari SK: Social networks to biological networks: systems biology of Mycobacterium tuberculosis. Mol BioSyst 2013, 9:1584-1593.
  • [22]Vashisht R, Mondal AK, Jain A, Shah A, Vishnoi P, Priyadarshini P, Bhattacharyya K, Rohira H, Bhat AG, Passi A, Mukherjee K, Choudhary KS, Kumar V, Arora A, Munusamy P, Subramanian A, Venkatachalam A, Gayathri S, Raj S, Chitra V, Verma K, Zaheer S, Balaganesh J, Gurusamy M, Razeeth M, Raja I, Thandapani M, Mevada V, Soni R, Rana S, et al.: Crowd sourcing a new paradigm for interactome driven drug target identification in Mycobacterium tuberculosis. PLoS ONE 2012, 7:e39808.
  • [23]Anand P, Sankaran S, Mukherjee S, Yeturu K, Laskowski R, Bhardwaj A, Bhagavat R, Brahmachari SK, Chandra N, Consortium O: Structural annotation of Mycobacterium tuberculosis proteome. PLoS ONE 2011, 6:e27044.
  • [24]Jamshidi N, Palsson B: Investigating the metabolic capabilities of Mycobacterium tuberculosis H37Rv using the in silico strain iNJ661 and proposing alternative drug targets. BMC Syst Biol 2007, 1:26. BioMed Central Full Text
  • [25]Thiele I, Palsson BO: A protocol for generating a high-quality genome-scale metabolic reconstruction. Nat Protocols 2010, 5:93-121.
  • [26]Camus J-C, Pryor MJ, Mcdigue C, Cole ST: Re-annotation of the genome sequence of Mycobacterium tuberculosis H37Rv. Microbiology 2002, 148:2967-2973.
  • [27]Cole ST, Brosch R, Parkhill J, Garnier T, Churcher C, Harris D, Gordon SV, Eiglmeier K, Gas S, Barry CE, Tekaia F, Badcock K, Basham D, Brown D, Chillingworth T, Connor R, Davies R, Devlin K, Feltwell T, Gentles S, Hamlin N, Holroyd S, Hornsby T, Jagels K, Krogh A, McLean J, Moule S, Murphy L, Oliver K, Osborne J, et al.: Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence. Nature 1998, 393:537-544.
  • [28]Beste D, Hooper T, Stewart G, Bonde B, Avignone-Rossa C, Bushell M, Wheeler P, Klamt S, Kierzek A, McFadden J: GSMN-TB: a web-based genome-scale network model of Mycobacterium tuberculosis metabolism. Genome Biol 2007, 8:R89. BioMed Central Full Text
  • [29]Fang X, Wallqvist A, Reifman J: Development and analysis of an in vivo-compatible metabolic network of Mycobacterium tuberculosis. BMC Syst Biol 2010, 4:160. BioMed Central Full Text
  • [30]Purwantini E, Mukhopadhyay B: Conversion of NO2 to NO by reduced coenzyme F420 protects mycobacteria from nitrosative damage. Proc Natl Acad Sci 2009, 106:6333-6338.
  • [31]Kanehisa M, Goto S, Sato Y, Furumichi M, Tanabe M: KEGG for integration and interpretation of large-scale molecular data sets. Nucleic Acids Res 2012, 40:D109-D114.
  • [32]Orth JD, Thiele I, Palsson BO: What is flux balance analysis? Nat Biotech 2010, 28:245-248.
  • [33]Cox RA: Quantitative relationships for specific growth rates and macromolecular compositions of Mycobacterium tuberculosis, Streptomyces coelicolor A3(2) and Escherichia coli B/r: an integrative theoretical approach. Microbiology 2004, 150:1413-1426.
  • [34]James BW, Williams A, Marsh PD: The physiology and pathogenicity of Mycobacterium tuberculosis grown under controlled conditions in a defined medium. J Appl Microbiol 2000, 88:669-677.
  • [35]Ravasz E, Somera AL, Mongru DA, Oltvai ZN, Barabasi AL: Hierarchical organization of modularity in metabolic networks. Science 2002, 297:1551-1555.
  • [36]Arnvig KB, Comas I, Thomson NR, Houghton J, Boshoff HI, Croucher NJ, Rose G, Perkins TT, Parkhill J, Dougan G, Young DB: Sequence-based analysis uncovers an abundance of non-coding RNA in the total transcriptome of mycobacterium tuberculosis. PLoS Pathog 2011, 7:e1002342.
  • [37]Lewis NE, Hixson KK, Conrad TM, Lerman JA, Charusanti P, Polpitiya AD, Adkins JN, Schramm G, Purvine SO, Lopez¿AeFerrer D, Karl K, Elis R, Kong R, Smith RD, Palsson OB: Omic data from evolved E. coli are consistent with computed optimal growth from genome-scale models. Mol Syst Biol 2010, 6:390.
  • [38]Schubert OT, Mouritsen J, Ludwig C, Rost HL, Rosenberger G, Arthur PK, Claassen M, Campbell DS, Sun Z, Farrah T, Gengenbacher M, Maiolica A, Kaufmann SHE, Moritz RL, Aebersold R: The Mtb proteome library: a resource of assays to quantify the complete proteome of Mycobacterium tuberculosis. Cell Host Microbe 2013, 13:602-612.
  • [39]Ryndak M, Wang S, Smith I: PhoP, a key player in Mycobacterium tuberculosis virulence. Trends Microbiol 2008, 16:528-534.
  • [40]Abomoelak B, Hoye EA, Chi J, Marcus SA, Laval F, Bannantine JP, Ward SK, DaffÈ M, Liu HD, Talaat AM: mosR, a novel transcriptional regulator of hypoxia and virulence in Mycobacterium tuberculosis. J Bacteriol 2009, 191:5941-5952.
  • [41]Manganelli R, Voskuil MI, Schoolnik GK, Smith I: The Mycobacterium tuberculosis ECF sigma factor ?E: role in global gene expression and survival in macrophages¿. Mol Microbiol 2001, 41:423-437.
  • [42]Wakamoto Y, Dhar N, Chait R, Schneider K, Signorino-Gelo F, Leibler S, McKinney JD: Dynamic persistence of antibiotic-stressed mycobacteria. Science 2013, 339:91-95.
  • [43]Rotem E, Loinger A, Ronin I, Levin-Reisman I, Gabay C, Shoresh N, Biham O, Balaban NQ: Regulation of phenotypic variability by a threshold-based mechanism underlies bacterial persistence. Proc Natl Acad Sci 2010, 107(28):12541-6. 13
  • [44]Shah D, Zhang Z, Khodursky A, Kaldalu N, Kurg K, Lewis K: Persisters: a distinct physiological state of E. coli. BMC Microbiol 2006, 6:53. BioMed Central Full Text
  • [45]Dorr T, Lewis K, Vulic M: SOS response induces persistence to fluoroquinolones in Escherichia coli. PLoS Genet 2009, 5:e1000760.
  • [46]Veening J-W, Smits WK, Kuipers OP: Bistability, epigenetics, and bet-hedging in bacteria. Annu Rev Microbiol 2008, 62:193-210.
  • [47]Eldar A, Elowitz MB: Functional roles for noise in genetic circuits. Nature 2010, 467:167-173.
  • [48]Raj A, van Oudenaarden A: Nature, nurture, or chance: stochastic gene expression and its consequences. Cell 2008, 135:216-226.
  • [49]Alliance T: Handbook of anti-tuberculosis agents. Tuberculosis 2008, 88:1-169.
  • [50]Wang F, Sambandan D, Halder R, Wang J, Batt SM, Weinrick B, Ahmad I, Yang P, Zhang Y, Kim J, Hassani M, Huszar S, Trefzer C, Ma Z, Kaneko T, Mdluli KE, Franzblau S, Chatterjee AK, Johnsson K, Mikusova K, Besra GS, Fütterer K, Robbins SH, Barnes SW, Walker JR, Jacobs WR, Schultz PG: Identification of a small molecule with activity against drug-resistant and persistent tuberculosis. Proc Natl Acad Sci 2013, 110(27):E25107-7. 2
  • [51]Safi H, Sayers B, Hazbn MH, Alland D: Transfer of embB Codon 306 Mutations into Clinical Mycobacterium tuberculosis Strains Alters Susceptibility to Ethambutol, Isoniazid, and Rifampin. Antimicrob Agents Chemother 2008, 52:2027-2034.
  • [52]Karakousis PC, Williams EP, Bishai WR: Altered expression of isoniazid-regulated genes in drug-treated dormant Mycobacterium tuberculosis. J Antimicrob Chemother 2008, 61:323-331.
  • [53]Bai G, McCue LA, McDonough KA: Characterization of Mycobacterium tuberculosis Rv3676 (CRPMt), a Cyclic AMP Receptor Protein-Like DNA Binding Protein. J Bacteriol 2005, 187:7795-7804.
  • [54]Keren I, Minami S, Rubin E, Lewis K: Characterization and Transcriptome Analysis of Mycobacterium tuberculosis Persisters. mBio 2011, 2(3):e00100-11.
  • [55]Boshoff HIM, Myers TG, Copp BR, McNeil MR, Wilson MA, Barry CE: The transcriptional responses of mycobacterium tuberculosis to inhibitors of metabolism: NOVEL INSIGHTS INTO DRUG MECHANISMS OF ACTION. J Biol Chem 2004, 279:40174-40184.
  • [56]Boshoff HIM, Xu X, Tahlan K, Dowd CS, Pethe K, Camacho LR, Park T-H, Yun C-S, Schnappinger D, Ehrt S, Kerstin JW, Barry EC: Biosynthesis and recycling of nicotinamide cofactors in Mycobacterium tuberculosis: an essential role for NAD in Nonreplicating Bacilli. J Biol Chem 2008, 283:19329-19341.
  • [57]Kim J-H, O¿ÄôBrien KM, Sharma R, Boshoff HIM, Rehren G, Chakraborty S, Wallach JB, Monteleone M, Wilson DJ, Aldrich CC, Barry CE, Rhee KY, Ehrt S, Schnappinger D: A genetic strategy to identify targets for the development of drugs that prevent bacterial persistence. Proc Natl Acad Sci 2013, 110(47):19095-100. 19
  • [58]Kalscheuer R, Weinrick B, Veeraraghavan U, Besra GS, Jacobs WR: Trehalose-recycling ABC transporter LpqY-SugA-SugB-SugC is essential for virulence of Mycobacterium tuberculosis. Proc Natl Acad Sci 2010, 107:21761-21766.
  • [59]Andries K, Verhasselt P, Guillemont J, Gohlmann HWH, Neefs J-M, Winkler H, Van Gestel J, Timmerman P, Zhu M, Lee E, Williams P, Chaffoy D, Huitric E, Hoffner S, Cambau E, Pernot CT, Lounis N, Jarlier V: A Diarylquinoline Drug Active on the ATP Synthase of Mycobacterium tuberculosis. Science 2005, 307:223-227.
  • [60]Camacho LR, Constant P, Raynaud C, Lanoelle M-A, Triccas JA, Gicquel B, Daffo M, Guilhot C: Analysis of the Phthiocerol Dimycocerosate Locus of Mycobacterium tuberculosis : Evidence that this lipid is involved in the cell wall permeability barrier. J Biol Chem 2001, 276:19845-19854.
  • [61]Azad AK, Sirakova TD, Fernandes ND, Kolattukudy PE: Gene knockout reveals a novel gene cluster for the synthesis of a class of cell wall lipids unique to pathogenic mycobacteria. J Biol Chem 1997, 272:16741-16745.
  • [62]Besra GS, Morehouse CB, Rittner CM, Waechter CJ, Brennan PJ: Biosynthesis of Mycobacterial Lipoarabinomannan. J Biol Chem 1997, 272:18460-18466.
  • [63]Chatterjee D, Khoo K-H: Mycobacterial lipoarabinomannan: an extraordinary lipoheteroglycan with profound physiological effects. Glycobiology 1998, 8:113-120.
  • [64]Altendorf K, Voelkner P, Puppe W: The sensor kinase KdpD and the response regulator KdpE control expression of the kdpFABC operon in Escherichia coli. Res Microbiol 1994, 145:374-381.
  • [65]Kana BDME, Schechter N, Teh J-S, Rubin H, Mizrahi V: Electron transport and respiration in mycobacteria. Horizon Scientific Press; 2009.
  • [66]Brynildsen MP, Winkler JA, Spina CS, MacDonald IC, Collins JJ: Potentiating antibacterial activity by predictably enhancing endogenous microbial ROS production. Nat Biotech 2013, 31:160-165.
  • [67]Allison KR, Brynildsen MP, Collins JJ: Metabolite-enabled eradication of bacterial persisters by aminoglycosides. Nature 2011, 473:216-220.
  • [68]Rossi ED, Aínsa JA, Riccardi G: Role of mycobacterial efflux transporters in drug resistance: an unresolved question. FEMS Microbiol Rev 2006, 30:36-52.
  • [69]Bordbar A, Lewis NE, Schellenberger J, Palsson BO, Jamshidi N: Insight into human alveolar macrophage and M. tuberculosis interactions via metabolic reconstructions. Mol Syst Biol 2010, 6:422. 19
  文献评价指标  
  下载次数:13次 浏览次数:8次