期刊论文详细信息
Journal of Biomedical Science
Insulin receptor substrate-1 prevents autophagy-dependent cell death caused by oxidative stress in mouse NIH/3T3 cells
Wen-Chang Chang2  Jyh-Hong Chen4  Hidenori Matsuzaki3  Ushio Kikkawa1  Shih-Hung Chan4 
[1] Biosignal Research Center, Organization of Advanced Science and Technology, Kobe University, 1-1 Rokkodai-cho, Nada-ku, Kobe, 657-8501, Japan;Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei City, Taiwan;Department of Hygiene, Kawasaki Medical School, 577 Matsushima, Kurashiki, 701-0192, Japan;Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, 138 Sheng-Li Road, 704, Tainan, Taiwan
关键词: Glucose oxidase;    Reactive oxygen species;    p70 ribosomal protein S6 kinase;    Mammalian target of rapamycin;    Cancer;    Cell death;    Autophagy;    Oxidative stress;    Insulin receptor substrate;   
Others  :  824800
DOI  :  10.1186/1423-0127-19-64
 received in 2012-04-07, accepted in 2012-06-27,  发布年份 2012
PDF
【 摘 要 】

Background

Insulin receptor substrate (IRS)-1 is associated with tumorigenesis; its levels are elevated in several human cancers. IRS-1 protein binds to several oncogene proteins. Oxidative stress and reactive oxygen species (ROS) are involved in the initiation and progression of cancers. Cancer cells produce greater levels of ROS than normal cells do because of increased metabolic stresses. However, excessive production of ROS kills cancer cells. Autophagy usually serves as a survival mechanism in response to stress conditions, but excessive induction of autophagy results in cell death. In addition to inducing necrosis and apoptosis, ROS induces autophagic cell death. ROS inactivates IRS-1 mediated signaling and reduces intracellular IRS-1 concentrations. Thus, there is a complex relationship between IRS-1, ROS, autophagy, and cancer. It is not fully understood how cancer cells grow rapidly and survive in the presence of high ROS levels.

Methods and results

In this study, we established mouse NIH/3T3 cells that overexpressed IRS-1, so mimicking cancers with increased IRS-1 expression levels; we found that the IRS-1 overexpressing cells grow more rapidly than control cells do. Treatment of cells with glucose oxidase (GO) provided a continuous source of ROS; low dosages of GO promoted cell growth, while high doses induced cell death. Evidence for GO induced autophagy includes increased levels of isoform B-II microtubule-associated protein 1 light chain 3 (LC3), aggregation of green fluorescence protein-tagged LC3, and increased numbers of autophagic vacuoles in cells. Overexpression of IRS-1 resulted in inhibition of basal autophagy, and reduced oxidative stress-induced autophagy and cell death. ROS decreased the mammalian target of rapamycin (mTOR)/p70 ribosomal protein S6 kinase signaling, while overexpression of IRS-1 attenuated this inhibition. Knockdown of autophagy-related gene 5 inhibited basal autophagy and diminished oxidative stress-induced autophagy and cell death.

Conclusion

Our results suggest that overexpression of IRS-1 promotes cells growth, inhibits basal autophagy, reduces oxidative stress-induced autophagy, and diminishes oxidative stress-mediated autophagy-dependent cell death. ROS-mediated autophagy may occur via inhibition of IRS-1/phosphatidylinositol 3-kinase/mTOR signaling. Our data afford a plausible explanation for IRS-1 involvement in tumor initiation and progression.

【 授权许可】

   
2012 Chan et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20140713045627768.pdf 1957KB PDF download
Figure 9. 36KB Image download
Figure 8. 77KB Image download
Figure 7. 91KB Image download
Figure 6. 36KB Image download
Figure 5. 47KB Image download
Figure 4. 35KB Image download
Figure 3. 125KB Image download
Figure 2. 86KB Image download
Figure 1. 53KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

Figure 7.

Figure 8.

Figure 9.

【 参考文献 】
  • [1]White MF, Maron R, Kahn CR: Insulin rapidly stimulates tyrosine phosphorylation of a Mr-185,000 protein in intact cells. Nature 1985, 318:183-186.
  • [2]Sun XJ, Rothenberg P, Kahn CR, Backer JM, Araki E, Wilden PA, Cahill DA, Goldstein BJ, White MF: Structure of the insulin receptor substrate IRS-1 defines a unique signal transduction protein. Nature 1991, 352:73-77.
  • [3]Sun XJ, Crimmins DL, Myers MG, Miralpeix M, White MF: Pleiotropic insulin signals are engaged by multisite phosphorylation of IRS-1. Mol Cell Biol 1993, 13:7418-7428.
  • [4]Mardilovich K, Pankratz S, Shaw L: Expression and function of the insulin receptor substrate proteins in cancer. Cell Commun Signal 2009, 7:14. BioMed Central Full Text
  • [5]Bergmann U, Funatomi H, Kornmann M, Beger HG, Korc M: Increased expression of insulin receptor substrate-1 in human pancreatic cancer. Biochem Biophys Res Commun 1996, 220:886-890.
  • [6]Kornmann M, Maruyama H, Bergmann U, Tangvoranuntakul P, Beger HG, White MF, Korc M: Enhanced expression of the insulin receptor substrate-2 docking protein in human pancreatic cancer. Cancer Res 1998, 58:4250-4254.
  • [7]Hellawell GO, Turner GDH, Davies DR, Poulsom R, Brewster SF, Macaulay VM: Expression of the type 1 insulin-like growth factor receptor is up-regulated in primary prostate cancer and commonly persists in metastatic disease. Cancer Res 2002, 62:2942-2950.
  • [8]Rocha RL, Hilsenbeck SG, Jackson JG, VanDenBerg CL, Weng CN, Lee AV, Yee D: Insulin-like growth factor binding protein-3 and insulin receptor substrate-1 in breast cancer: correlation with clinical parameters and disease-free survival. Clin Cancer Res 1997, 3:103-109.
  • [9]Koda M, Sulkowska M, Kanczuga-Koda L, Sulkowski S: Expression of insulin receptor substrate 1 in primary breast cancer and lymph node metastases. J Clin Pathol 2005, 58:645-649.
  • [10]Ravikumar S, Perez-Liz G, Del Vale L, Soprano DR, Soprano KJ: Insulin receptor substrate-1 is an important mediator of ovarian cancer cell growth suppression by all-trans retinoic acid. Cancer Res 2007, 67:9266-9275.
  • [11]Jackson JG, White MF, Yee D: Insulin receptor substrate-1 is the predominant signaling molecule activated by insulin-like growth factor-I, insulin, and interleukin-4 in estrogen receptor-positive human breast cancer cells. J Biol Chem 1998, 273:9994-10003.
  • [12]Pryor WA, Houk KN, Foote CS, Fukuto JM, Ignarro LJ, Squadrito GL, Davies KJA: Free radical biology and medicine: it's a gas, man! Am J Physiol Regul Integr Comp Physiol 2006, 291:R491-R511.
  • [13]Martindale JL, Holbrook NJ: Cellular response to oxidative stress: Signaling for suicide and survival. J Cell Physiol 2002, 192:1-15.
  • [14]Szatrowski TP, Nathan CF: Production of large amounts of hydrogen peroxide by human tumor cells. Cancer Res 1991, 51:794-798.
  • [15]Trachootham D, Zhou Y, Zhang H, Demizu Y, Chen Z, Pelicano H, Chiao PJ, Achanta G, Arlinghaus RB, Liu J, Huang P: Selective killing of oncogenically transformed cells through a ROS-mediated mechanism by β-phenylethyl isothiocyanate. Cancer Cell 2006, 10:241-252.
  • [16]Paul TS: Reactive oxygen species in cancer cells: Live by the sword, die by the sword. Cancer Cell 2006, 10:175-176.
  • [17]Waris G, Ahsan H: Reactive oxygen species: role in the development of cancer and various chronic conditions. J Carcinog 2006, 5:14. BioMed Central Full Text
  • [18]Kroemer G, El-Deiry WS, Golstein P, Peter ME, Vaux D, Vandenabeele P, Zhivotovsky B, Blagosklonny MV, Malorni W, Knight RA, Piacentini M, Nagata S, Melino G: Classification of cell death: recommendations of the Nomenclature Committee on Cell Death. Cell Death Differ 2005, 12:1463-1467.
  • [19]Ryter SW, Kim HP, Hoetzel A, Park JW, Nakahira K, Wang X, Choi AM: Mechanisms of cell death in oxidative stress. Antioxid Redox Signal 2007, 9:49-89.
  • [20]Baines CP, Kaiser RA, Purcell NH, Blair NS, Osinska H, Hambleton MA, Brunskill EW, Sayen MR, Gottlieb RA, Dorn GW, Robbins J, Molkentin JD: Loss of cyclophilin D reveals a critical role for mitochondrial permeability transition in cell death. Nature 2005, 434:658-662.
  • [21]Nakagawa T, Shimizu S, Watanabe T, Yamaguchi O, Otsu K, Yamagata H, Inohara H, Kubo T, Tsujimoto Y: Cyclophilin D-dependent mitochondrial permeability transition regulates some necrotic but not apoptotic cell death. Nature 2005, 434:652-658.
  • [22]Kyungsun C, Jinho K, Kim GW, Chulhee C: Oxidative stress-induced necrotic cell death via mitochondira-dependent burst of reactive oxygen species. Curr Neurovasc Res 2009, 6:213-222.
  • [23]Chen Y, Azad MB, Gibson SB: Superoxide is the major reactive oxygen species regulating autophagy. Cell Death Differ 2009, 16:1040-1052.
  • [24]Huang J, Canadien V, Lam GY, Steinberg BE, Dinauer MC, Magalhaes MAO, Glogauer M, Grinstein S, Brumell JH: Activation of antibacterial autophagy by NADPH oxidases. Proc Natl Acad Sci USA 2009, 106:6226-6231.
  • [25]Scherz-Shouval R, Shvets E, Fass E, Shorer H, Gil L, Elazar Z: Reactive oxygen species are essential for autophagy and specifically regulate the activity of Atg4. EMBO J 2007, 26:1749-1760.
  • [26]Lee JS, Giordano S, Zhang JH: Autophagy, mitochondria and oxidative stress: cross-talk and redox signalling. Biochem J 2012, 441:523-540.
  • [27]Chen Y, McMillan-Ward E, Kong J, Israels SJ, Gibson SB: Oxidative stress induces autophagic cell death independent of apoptosis in transformed and cancer cells. Cell Death Differ 2007, 15:171-182.
  • [28]Jung SN, Yang WK, Kim J, Kim HS, Kim EJ, Yun H, Park H, Kim SS, Choe W, Kang I, Ha J: Reactive oxygen species stabilize hypoxia-inducible factor-1 alpha protein and stimulate transcriptional activity via AMP-activated protein kinase in DU145 human prostate cancer cells. Carcinogenesis 2008, 29:713-721.
  • [29]Codogno P, Meijer AJ: Autophagy and signaling: their role in cell survival and cell death. Cell Death Differ 2005, 12:1509-1518.
  • [30]Gwinn DM, Shackelford DB, Egan DF, Mihaylova MM, Mery A, Vasquez DS, Turk BE, Shaw RJ: AMPK phosphorylation of raptor mediates a metabolic checkpoint. Mol Cell 2008, 30:214-226.
  • [31]Yang Z, Klionsky DJ: Mammalian autophagy: core molecular machinery and signaling regulation. Curr Opin Cell Biol 2010, 22:124-131.
  • [32]Inoki K, Zhu T, Guan K-L: TSC2 mediates cellular energy response to control cell growth and survival. Cell 2003, 115:577-590.
  • [33]Alexander A, Cai S-L, Kim J, Nanez A, Sahin M, MacLean KH, Inoki K, Guan K-L, Shen J, Person MD, Kusewitt D, Mills GB, Kastan MB, Walker CL: ATM signals to TSC2 in the cytoplasm to regulate mTORC1 in response to ROS. Proc Natl Acad Sci USA 2010, 107:4153-4158.
  • [34]Tzatsos A, Tsichlis PN: Energy depletion inhibits phosphatidylinositol 3-Kinase/Akt signaling and induces apoptosis via AMP-activated protein kinase-dependent phosphorylation of IRS-1 at Ser-794. J Biol Chem 2007, 282:18069-18082.
  • [35]Potashnik R, Bloch-Damti A, Bashan N, Rudich A: IRS1 degradation and increased serine phosphorylation cannot predict the degree of metabolic insulin resistance induced by oxidative stress. Diabetologia 2003, 46:639-648.
  • [36]Sridharan S, Jain K, Basu A: Regulation of autophagy by kinases. Cancers. 2011, 3:2630-2654.
  • [37]Horman S, Vertommen D, Heath R, Neumann D, Mouton V, Woods A, Schlattner U, Wallimann T, Carling D, Hue L, Rider MH: Insulin antagonizes ischemia-induced Thr172 phosphorylation of AMP-activated protein kinase α-subunits in heart via hierarchical phosphorylation of Ser485/491. J Biol Chem 2006, 281:5335-5340.
  • [38]Salazar JJ, Van Houten B: Preferential mitochondrial DNA injury caused by glucose oxidase as a steady generator of hydrogen peroxide in human fibroblasts. Mut Res 1997, 385:139-149.
  • [39]Rubinsztein DC, Cuervo AM, Ravikumar B, Sarkar S, Korolchuk VI, Kaushik S, Klionsky DJ: In search of an “autophagomometer”. Autophagy 2009, 5:585-589.
  • [40]Kabeya Y, Mizushima N, Ueno T, Yamamoto A, Kirisako T, Noda T, Kominami E, Ohsumi Y, Yoshimori T: LC3, a mammalian homologue of yeast Apg8p, is localized in autophagosome membranes after processing. EMBO J 2000, 19:5720-5728.
  • [41]Mizushima N, Yoshimori T: How to interpret LC3 immunoblotting. Autophagy 2007, 3:542-545.
  • [42]Mizushima N, Yoshimori T, Levine B: Methods in mammalian autophagy research. Cell. 2010, 140:313-326.
  • [43]Levine B, Klionsky DJ: Development by self-digestion: molecular mechanisms and biological functions of autophagy. Dev Cell 2004, 6:463-477.
  • [44]Ichimura Y, Kirisako T, Takao T, Satomi Y, Shimonishi Y, Ishihara N, Mizushima N, Tanida I, Kominami E, Ohsumi M, Noda T, Ohsumi Y: A ubiquitin-like system mediates protein lipidation. Nature 2000, 408:488-492.
  • [45]Rubinsztein DC, Gestwicki JE, Murphy LO, Klionsky DJ: Potential therapeutic applications of autophagy. Nat Rev Drug Discov 2007, 6:304-312.
  • [46]Ravikumar B, Vacher C, Berger Z, Davies JE, Luo S, Oroz LG, Scaravilli F, Easton DF, Duden R, O'Kane CJ, Rubinsztein DC: Inhibition of mTOR induces autophagy and reduces toxicity of polyglutamine expansions in fly and mouse models of Huntington disease. Nat Genet 2004, 36:585-595.
  • [47]Kroemer G, Levine B: Autophagic cell death: the story of a misnomer. Nat Rev Mol Cell Biol 2008, 9:1004-1010.
  • [48]Huser CA, Pringle MA, Heath VJ, Bell AK, Kendrick H, Smalley MJ, Crighton D, Ryan KM, Gusterson BA, Stein T: TSC-22D1 isoforms have opposing roles in mammary epithelial cell survival. Cell Death Differ 2009, 17:304-315.
  • [49]Chen Y, Azad MB, Gibson SB: Methods for detecting autophagy and determining autophagy-induced cell death. Can J Physiol Pharmacol 2010, 88:285-295.
  • [50]Shen S, Kepp O, Kroemer G: The end of autophagic cell death? Autophagy 2012, 8:1-3.
  • [51]Elgendy M, Sheridan C, Brumatti G: Martin Seamus J: Oncogenic Ras-induced expression of Noxa and Beclin-1 promotes autophagic cell death and limits clonogenic survival. Mol Cell 2011, 42:23-35.
  • [52]Voss V, Senft C, Lang V, Ronellenfitsch MW, Steinbach JP, Seifert V, Kögel D: The Pan-Bcl-2 Inhibitor (−)-Gossypol triggers autophagic cell death in malignant glioma. Mol Cancer Res 2010, 8:1002-1016.
  • [53]Puissant A, Robert G, Fenouille N, Luciano F, Cassuto J-P, Raynaud S, Auberger P: Resveratrol promotes autophagic cell death in chronic myelogenous leukemia cells via JNK-mediated p62/SQSTM1 expression and AMPK activation. Cancer Res 2010, 70:1042-1052.
  • [54]Boya P, González-Polo R-A, Casares N, Perfettini J-L, Dessen P, Larochette N, Métivier D, Meley D, Souquere S, Yoshimori T, Pierron G, Codogno P, Kroemer G: Inhibition of macroautophagy triggers apoptosis. Mol Cell Biol 2005, 25:1025-1040.
  • [55]Lum JJ, Bauer DE, Kong M, Harris MH, Li C, Lindsten T, Thompson CB: Growth factor regulation of autophagy and cell survival in the absence of apoptosis. Cell 2005, 120:237-248.
  • [56]Shen S, Kepp O, Michaud M, Martins I, Minoux H, Metivier D, Maiuri MC, Kroemer RT, Kroemer G: Association and dissociation of autophagy, apoptosis and necrosis by systematic chemical study. Oncogene 2011, 30:4544-4556.
  • [57]Riehle C, Bugger H, Sena S, Pires KM, Theobald HA, Perry-Garza CN, Frank D, Dong X, Moon A, Gottlieb R, White MF, Abel D: Insulin receptor substrates (IRS) are critical regulators of autophagy and cardiomyocyte survival [abstract]. Circulation 2009, 120:S901.
  • [58]Cagnol S, Chambard J-C: ERK and cell death: Mechanisms of ERK-induced cell death – apoptosis, autophagy and senescence. FEBS J 2010, 277:2-21.
  • [59]Scott RC, Schuldiner O, Neufeld TP: Role and regulation of starvation-induced autophagy in the Drosophila fat body. Dev Cell 2004, 7:167-178.
  • [60]Zeng X, Kinsella TJ: Mammalian target of rapamycin and S6 Kinase 1 positively regulate 6-thioguanine-induced autophagy. Cancer Res 2008, 68:2384-2390.
  • [61]Dearth RK, Cui X, Kim H-J, Kuiatse I, Lawrence NA, Zhang X, Divisova J, Britton OL, Mohsin S, Allred DC, Hadsell DL, Lee AV: Mammary tumorigenesis and metastasis caused by overexpression of insulin receptor substrate 1 (IRS-1) or IRS-2. Mol Cell Biol 2006, 26:9302-9314.
  • [62]Khalili K, Del Valle L, Wang JY, Darbinian N, Lassak A, Safak M, Reiss K: T-antigen of human polyomavirus JC cooperates withIGF-IR signaling system in cerebellar tumors of the childhood-medulloblastomas. Anticancer Res 2003, 23(3A):2035-2041.
  • [63]Fei ZL, D'Ambrosio C, Li S, Surmacz E, Baserga R: Association of insulin receptor substrate 1 with simian virus 40 large T antigen. Mol Cell Biol 1995, 15:4232-4239.
  • [64]Uchida T, Myers MG, White MF: IRS-4 mediates protein kinase B signaling during insulin stimulation without promoting antiapoptosis. Mol Cell Biol 2000, 20:126-138.
  • [65]Li L, Qi X, Williams M, Shi Y, Keegan AD: Overexpression of insulin receptor substrate-1, but not insulin receptor substrate-2, protects a T cell Hybridoma from activation-induced cell death. J Immunol 2002, 168:6215-6223.
  文献评价指标  
  下载次数:54次 浏览次数:15次