期刊论文详细信息
Clinical Epigenetics
Genome-scale hypomethylation in the cord blood DNAs associated with early onset preeclampsia
Lana X Garmire1  Dena Towner5  Marla J Berry2  Janos Molnar3  Maarit Tiirikainen3  Min-Ae Song3  James Ha4  Travers Ching1 
[1] Epidemiology Program, University of Hawaii Cancer Center, Honolulu 96813, HI, USA;Department of Cell and Molecular Biology, John A. Burns School of Medicine, University of Hawaii, Honolulu 96813, HI, USA;Genomics Shared Resources, University of Hawaii Cancer Center, Honolulu 96813, HI, USA;Division of Biology and Biological Engineering, California Institute of Technology, Pasadena 91126, CA, USA;Department of Obstetrics, Gynecology and Women’s Health, John A. Burns School of Medicine, University of Hawaii, Honolulu 96826, HI, USA
关键词: Bioinformatics;    Cord blood;    DNA methylation;    Epigenetics;    Preeclampsia;   
Others  :  1147828
DOI  :  10.1186/s13148-015-0052-x
 received in 2014-10-08, accepted in 2015-02-05,  发布年份 2015
PDF
【 摘 要 】

Background

Preeclampsia is one of the leading causes of fetal and maternal morbidity and mortality worldwide. Preterm babies of mothers with early onset preeclampsia (EOPE) are at higher risks for various diseases later on in life, including cardiovascular diseases. We hypothesized that genome-wide epigenetic alterations occur in cord blood DNAs in association with EOPE and conducted a case control study to compare the genome-scale methylome differences in cord blood DNAs between 12 EOPE-associated and 8 normal births.

Results

Bioinformatics analysis of methylation data from the Infinium HumanMethylation450 BeadChip shows a genome-scale hypomethylation pattern in EOPE, with 51,486 hypomethylated CpG sites and 12,563 hypermethylated sites (adjusted P <0.05). A similar trend also exists in the proximal promoters (TSS200) associated with protein-coding genes. Using summary statistics on the CpG sites in TSS200 regions, promoters of 643 and 389 genes are hypomethylated and hypermethylated, respectively. Promoter-based differential methylation (DM) analysis reveals that genes in the farnesoid X receptor and liver X receptor (FXR/LXR) pathway are enriched, indicating dysfunction of lipid metabolism in cord blood cells. Additional biological functional alterations involve inflammation, cell growth, and hematological system development. A two-way ANOVA analysis among coupled cord blood and amniotic membrane samples shows that a group of genes involved in inflammation, lipid metabolism, and proliferation are persistently differentially methylated in both tissues, including IL12B, FAS, PIK31, and IGF1.

Conclusions

These findings provide, for the first time, evidence of prominent genome-scale DNA methylation modifications in cord blood DNAs associated with EOPE. They may suggest a connection between inflammation and lipid dysregulation in EOPE-associated newborns and a higher risk of cardiovascular diseases later in adulthood.

【 授权许可】

   
2015 Ching et al.; licensee BioMed Central.

【 预 览 】
附件列表
Files Size Format View
20150404045003447.pdf 1966KB PDF download
Figure 5. 73KB Image download
Figure 4. 45KB Image download
Figure 3. 38KB Image download
Figure 2. 54KB Image download
Figure 1. 22KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

【 参考文献 】
  • [1]Srinivas SK, Edlow AG, Neff PM, Sammel MD, Andrela CM, Elovitz MA: Rethinking IUGR in preeclampsia: dependent or independent of maternal hypertension? J Perinatol 2009, 29(10):680-4.
  • [2]Say L, Chou D, Gemmill A, Tunçalp Ö, Moller A-B, Daniels J, et al.: Global causes of maternal death: a WHO systematic analysis. Lancet Global Health 2014, 2(6):e323-33.
  • [3]Raymond D, Peterson E: A critical review of early-onset and late-onset preeclampsia. Obstet Gynecol Surv 2011, 66(8):497-506.
  • [4]Jung J-J, Tiwari A, Inamdar SM, Thomas CP, Goel A, Choudhury A: Secretion of soluble vascular endothelial growth factor receptor 1 (sVEGFR1/sFlt1) requires Arf1, Arf6, and Rab11 GTPases. PLoS One 2012, 7(9):e44572.
  • [5]Pijnenborg R, Vercruysse L, Hanssens M: The uterine spiral arteries in human pregnancy: facts and controversies. Placenta 2006, 27(9–10):939-58.
  • [6]Allaire AD, Ballenger KA, Wells SR, McMahon MJ, Lessey BA: Placental apoptosis in preeclampsia. Obstet Gynecol 2000, 96(2):271-6.
  • [7]Leung DN, Smith SC, To KF, Sahota DS, Baker PN: Increased placental apoptosis in pregnancies complicated by preeclampsia. Am J Obstet Gynecol 2001, 184(6):1249-50.
  • [8]Tal R: The role of hypoxia and hypoxia-inducible factor-1alpha in preeclampsia pathogenesis. Biol Reprod 2012, 87(6):134.
  • [9]Boos CJ, Lip GYH: Is hypertension an inflammatory process? Curr Pharm Des 2006, 12(13):1623-35.
  • [10]Nizet V, Johnson RS: Interdependence of hypoxic and innate immune responses. Nat Rev Immunol 2009, 9(9):609-17.
  • [11]Palazón A, Aragonés J, Morales-Kastresana A, de Landázuri MO, Melero I: Molecular pathways: hypoxia response in immune cells fighting or promoting cancer. Clin Cancer Res 2012, 18(5):1207-13.
  • [12]Batalle D, Eixarch E, Figueras F, Muñoz-Moreno E, Bargallo N, Illa M, et al.: Altered small-world topology of structural brain networks in infants with intrauterine growth restriction and its association with later neurodevelopmental outcome. Neuroimage 2012, 60(2):1352-66.
  • [13]Cosmi E, Fanelli T, Visentin S, Trevisanuto D, Zanardo V: Consequences in infants that were intrauterine growth restricted. J Pregnancy 2011, 2011:364381.
  • [14]Choudhury M, Friedman JE: Epigenetics and microRNAs in preeclampsia. Clin Exp Hypertens 2012, 34(5):334-41.
  • [15]Mousa AA, Archer KJ, Cappello R, Estrada-Gutierrez G, Isaacs CR, Strauss JF 3rd, et al.: DNA methylation is altered in maternal blood vessels of women with preeclampsia. Reprod Sci 2012, 19(12):1332-42.
  • [16]Anderson CM, Ralph JL, Wright ML, Linggi B, Ohm JE: DNA methylation as a biomarker for preeclampsia. Biol Res Nurs 2014, 16(4):409-20.
  • [17]Blair JD, Yuen RKC, Lim BK, McFadden DE: Dadelszen Pv, Robinson WP: Widespread DNA hypomethylation at gene enhancer regions in placentas associated with early-onset preeclampsia. Mol Hum Reprod 2013, 19(10):697-708.
  • [18]Bourque DK, Avila L, Penaherrera M, Von Dadelszen P, Robinson WP: Decreased placental methylation at the H19/IGF2 imprinting control region is associated with normotensive intrauterine growth restriction but not preeclampsia. Placenta 2010, 31(3):197-202.
  • [19]Kulkarni A, Chavan-Gautam P, Mehendale S, Yadav H, Joshi S: Global DNA methylation patterns in placenta and its association with maternal hypertension in pre-eclampsia. DNA Cell Biol 2011, 30(2):79-84.
  • [20]Yuen RKC, Penaherrera MS, von Dadelszen P, McFadden DE, Robinson WP: DNA methylation profiling of human placentas reveals promoter hypomethylation of multiple genes in early-onset preeclampsia. Eur J Hum Genet 2010, 18(9):1006-12.
  • [21]Hart SN, Therneau TM, Zhang Y, Poland GA, Kocher J-P: Calculating sample size estimates for RNA sequencing data. J Comput Biol 2013, 20(12):970-8.
  • [22]Nomura Y, Lambertini L, Rialdi A, Lee M, Mystal EY, Grabie M, et al.: Global methylation in the placenta and umbilical cord blood from pregnancies with maternal gestational diabetes, preeclampsia, and obesity. Reprod Sci 2014, 21(1):131-7.
  • [23]Burris HH, Rifas-Shiman SL, Baccarelli A, Tarantini L, Boeke CE, Kleinman K, et al.: Associations of LINE-1 DNA methylation with preterm birth in a prospective cohort study. J Dev Orig Health Dis 2012, 3(3):173-81.
  • [24]Gardiner-Garden M, Frommer M: CpG islands in vertebrate genomes. J Mol Biol 1987, 196(2):261-82.
  • [25]Zöchbauer-Müller S, Fong KM, Virmani AK, Geradts J, Gazdar AF, Minna JD: Aberrant promoter methylation of multiple genes in non-small cell lung cancers. Cancer Res 2001, 61(1):249-55.
  • [26]West J, Beck S, Wang X, Teschendorff AE: An integrative network algorithm identifies age-associated differential methylation interactome hotspots targeting stem-cell differentiation pathways. Sci Rep 2013, 3:1630.
  • [27]da Huang W, Sherman BT, Lempicki RA: Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc 2009, 4(1):44-57.
  • [28]Ching T, Song MA, Tiirikainen M, Molnar J, Berry M, Towner D, et al.: Genome-wide hypermethylation coupled with promoter hypomethylation in the chorioamniotic membranes of early onset pre-eclampsia. Mol Hum Reprod 2014, 20(9):885-904.
  • [29]Miles J, Shevlin M. Applying regression and correlation: a guide for students and researchers. Sage; 2001:131–148
  • [30]Bachmayer N, Rafik Hamad R, Liszka L, Bremme K, Sverremark-Ekstrom E: Aberrant uterine natural killer (NK)-cell expression and altered placental and serum levels of the NK-cell promoting cytokine interleukin-12 in pre-eclampsia. Am J Reprod Immunol 2006, 56(5–6):292-301.
  • [31]Novakovic B, Yuen RK, Gordon L, Penaherrera MS, Sharkey A, Moffett A, et al.: Evidence for widespread changes in promoter methylation profile in human placenta in response to increasing gestational age and environmental/stochastic factors. BMC Genomics 2011, 12:529. BioMed Central Full Text
  • [32]Cruickshank MN, Oshlack A, Theda C, Davis PG, Martino D, Sheehan P, et al.: Analysis of epigenetic changes in survivors of preterm birth reveals the effect of gestational age and evidence for a long term legacy. Genome Med 2013, 5(10):96. BioMed Central Full Text
  • [33]Michels KB, Harris HR, Barault L: Birthweight, maternal weight trajectories and global DNA methylation of LINE-1 repetitive elements. PLoS One 2011, 6(9):e25254.
  • [34]Nomura Y, Lambertini L, Rialdi A, Lee M, Mystal EY, Grabie M, et al.: Global methylation in the placenta and umbilical cord blood from pregnancies with maternal gestational diabetes, preeclampsia, and obesity. Reprod Sci 2013, 21(1):131-7. doi:10.1177/1933719113492206
  • [35]Sikkema JM, Van Rijn BB, Franx A, Bruinse HW, De Roos R, Stroes ESG, et al.: Placental superoxide is increased in pre-eclampsia. Placenta 2001, 22(4):304-8.
  • [36]Dechend R, Viedt C, Müller DN, Ugele B, Brandes RP, Wallukat G, et al.: AT1 receptor agonistic antibodies from preeclamptic patients stimulate NADPH oxidase. Circulation 2003, 107(12):1632-9.
  • [37]Redman CW, Sacks GP, Sargent IL: Preeclampsia: an excessive maternal inflammatory response to pregnancy. Am J Obstet Gynecol 1999, 180(2 Pt 1):499-506.
  • [38]Lausten-Thomsen U, Olsen M, Greisen G, Schmiegelow K: Inflammatory markers in umbilical cord blood from small-for-gestational-age newborns. Fetal Pediatr Pathol 2014, 33(2):114-8.
  • [39]Sohlberg E, Saghafian-Hedengren S, Bachmayer N, Hamad RR, Bremme K, Holmlund U: Pre-eclampsia affects cord blood NK cell expression of activation receptors and serum cytokine levels but not CB monocyte characteristics. Am J Reprod Immunol 2014, 71(2):178-88.
  • [40]Cemgil Arikan D, Aral M, Coskun A, Ozer A: Plasma IL-4, IL-8, IL-12, interferon-gamma and CRP levels in pregnant women with preeclampsia, and their relation with severity of disease and fetal birth weight. J Matern Fetal Neonatal Med 2012, 25(9):1569-73.
  • [41]Spann NJ, Garmire LX, McDonald JG, Myers DS, Milne SB, Shibata N, et al.: Regulated accumulation of desmosterol integrates macrophage lipid metabolism and inflammatory responses. Cell 2012, 151(1):138-52.
  • [42]Tavassoli M: Embryonic and fetal hemopoiesis: an overview. Blood Cells 1991, 17(2):269-81. discussion 282–266
  • [43]Kennedy MA, Barrera GC, Nakamura K, Baldan A, Tarr P, Fishbein MC, et al.: ABCG1 has a critical role in mediating cholesterol efflux to HDL and preventing cellular lipid accumulation. Cell Metab 2005, 1(2):121-31.
  • [44]Glass CK, Witztum JL: Atherosclerosis. The road ahead. Cell 2001, 104(4):503-16.
  • [45]Aryee MJ, Jaffe AE, Corrada-Bravo H, Ladd-Acosta C, Feinberg AP, Hansen KD, et al.: Minfi: a flexible and comprehensive Bioconductor package for the analysis of Infinium DNA methylation microarrays. Bioinformatics 2014, 30(10):1363-9.
  • [46]Maksimovic J, Gordon L, Oshlack A: SWAN: Subset-quantile Within Array Normalization for Illumina Infinium HumanMethylation450 BeadChips. Genome Biol 2012, 13(6):R44. BioMed Central Full Text
  • [47]Jiao Y, Widschwendter M, Teschendorff AE: A systems-level integrative framework for genome-wide DNA methylation and gene expression data identifies differential gene expression modules under epigenetic control. Bioinformatics 2014, 30(16):2360-6.
  • [48]Drier Y, Sheffer M, Domany E: Pathway-based personalized analysis of cancer. Proc Natl Acad Sci U S A 2013, 110(16):6388-93.
  文献评价指标  
  下载次数:21次 浏览次数:11次