| Microbial Informatics and Experimentation | |
| Computational genomics-proteomics and Phylogeny analysis of twenty one mycobacterial genomes (Tuberculosis & non Tuberculosis strains) | |
| Moulay Mustapha Ennaji1  Abdelaziz Benjouad2  David Ussery3  Othmane Aouane4  Fathiah Zakham1  | |
| [1] Laboratoire de Virologie et Hygiène & Microbiologie, Faculté des Sciences et Techniques, BP 146, Mohammedia, 20650, Morocco;Faculté des Sciences, Université Mohammed V-Agdal, Rabat, Morocco;Center for Biological Sequence Analysis, Technical University of Denmark, Lyngby, Denmark;Experimental physik, Universität des Saarlandes, Postfach 151150, 66041, Saarbrücken, Germany | |
| 关键词: Phylogeny; Pan- core genome; Mycobacterium tuberculosis; Evolution; Comparative genome analysis; BLAST matrix; | |
| Others : 811123 DOI : 10.1186/2042-5783-2-7 |
|
| received in 2012-03-15, accepted in 2012-08-02, 发布年份 2012 | |
PDF
|
|
【 摘 要 】
Background
The genus Mycobacterium comprises different species, among them the most contagious and infectious bacteria. The members of the complex Mycobacterium tuberculosis are the most virulent microorganisms that have killed human and other mammals since millennia. Additionally, with the many different mycobacterial sequences available, there is a crucial need for the visualization and the simplification of their data. In this present study, we aim to highlight a comparative genome, proteome and phylogeny analysis between twenty-one mycobacterial (Tuberculosis and non tuberculosis) strains using a set of computational and bioinformatics tools (Pan and Core genome plotting, BLAST matrix and phylogeny analysis).
Results
Considerably the result of pan and core genome Plotting demonstrated that less than 1250 Mycobacterium gene families are conserved across all species, and a total set of about 20,000 gene families within the Mycobacterium pan-genome of twenty one mycobacterial genomes.
Viewing the BLAST matrix a high similarity was found among the species of the complex Mycobacterium tuberculosis and less conservation is found with other slow growing pathogenic mycobacteria.
Phylogeny analysis based on both protein conservation, as well as rRNA clearly resolve known relationships between slow growing mycobacteria.
Conclusion
Mycobacteria include important pathogenic species for human and animals and the Mycobacterium tuberculosis complex is the most cause of death of the humankind. The comparative genome analysis could provide a new insight for better controlling and preventing these diseases.
【 授权许可】
2012 Zakham et al.; licensee BioMed Central Ltd.
【 预 览 】
| Files | Size | Format | View |
|---|---|---|---|
| 20140709060511368.pdf | 1320KB | ||
| Figure 3. | 64KB | Image | |
| Figure 2. | 66KB | Image | |
| Figure 1. | 56KB | Image |
【 图 表 】
Figure 1.
Figure 2.
Figure 3.
【 参考文献 】
- [1]Tortoli E: The new mycobacteria: an update. FEMS Immunol Med Microbiol 2006, 48:159-178.
- [2]Nerlich AG, Haas CJ, Zink A, Szeimies U, Hagedorn HG: Molecular evidence for tuberculosis in an ancient Egyptian mummy. Lancet 1997, 350:1404.
- [3]Ziskind B, Halioua B: La tuberculose en ancienne. Rev Mal Respir 2007, 24:1277-1283.
- [4]Donoghue HD, Lee OYC, Minnikin DE, Besra GS, Taylor JH, Spigelman M: Tuberculosis in Dr Granville's mummy: a molecular re-examination of the earliest known Egyptian mummy to be scientifically examined and given a medical diagnosis. P Roy Soc B-Biol Sci 2010, 277:51-56.
- [5]Michel AL, Maller B, van Helden PD: Mycobacterium bovis at the animalâ“human interface: A problem, or not? Vet Microbiol 2011, 140:371-381.
- [6]Taylor GM, Murphy E, Hopkins R, Rutland P, Chistov Y: First report of Mycobacterium bovis DNA in human remains from the Iron Age. Microbiology 2007, 153:1243-1249.
- [7]Cole ST: Comparative and functional genomics of the Mycobacterium tuberculosis complex. Microbiology 2002, 148:2919-2928.
- [8]Donoghue HD, Spigelman M, Greenblatt CL, Lev-Maor G, Kahila Bar-Gal G, Matheson C, Vernon K, Nerlich A G, Zink A R: Tuberculosis: from prehistory to Robert Koch, as revealed by ancient DNA. Lancet Infect Dis 2004, 4:584-592.
- [9]Brosch R, Gordon SV, Marmiesse M, Brodin P, Buchrieser C, Eiglmeier K, Garnier T, Gutierrez C, Hewinson G, Kremer K, et al.: A new evolutionary scenario for the Mycobacterium tuberculosis complex. Proc Natl Acad Sci 2002, 99:3684-3689.
- [10]Gutierrez MC, Brisse S, Brosch R, Fabre M, Omaas B, Marmiesse M, Supply P, Vincent V: Ancient Origin and Gene Mosaicism of the Progenitor of Mycobacterium tuberculosis. PLoS Pathog 2005, 1:e5.
- [11]Ernst JD, Trevejo-Nuñez G, Banaiee N: Genomics and the evolution, pathogenesis, and diagnosis of tuberculosis. J Clin Invest 2007, 117:1738-1745.
- [12]Devulder G, de Montclos MP, Flandrois JP: A multigene approach to phylogenetic analysis using the genus Mycobacterium as a model. Int J Syst Evol Microbiol 2005, 55:293-302.
- [13]van Ingen J, Boeree MJ, van Soolingen D, Iseman MD, Heifets LB, Daley CL: Are phylogenetic position, virulence, drug susceptibility and in vivo response to treatment in mycobacteria interrelated?. Genetics and Evolution: Infection; 2011.
- [14]Jang J, Becq J, Gicquel B, Deschavanne P, Neyrolles O: Horizontally acquired genomic islands in the tubercle bacilli. Trends Microbiol 2008, 16:303-308.
- [15]Rosas-Magallanes V, Deschavanne P, Quintana-Murci L, Brosch R, Gicquel B, Neyrolles O: Horizontal Transfer of a Virulence Operon to the Ancestor of Mycobacterium tuberculosis. Mol Biol Evol 2006, 23:1129-1135.
- [16]Veyrier F, Pletzer D, Turenne C, Behr M: Phylogenetic detection of horizontal gene transfer during the step-wise genesis of Mycobacterium tuberculosis. BMC Evol Biol 2009, 9:196. BioMed Central Full Text
- [17]Garcia-Betancur JC, Menendez MC, Del Portillo P, Garcia MJ: Alignment of multiple complete genomes suggests that gene rearrangements may contribute towards the speciation of Mycobacteria. Genetics and Evolution: Infection; 2011.
- [18]Cole ST, Brosch R, Parkhill J, Garnier T, Churcher C, Harris D, Gordon SV, Eiglmeier K, Gas S, Barry CE, et al.: Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence. Nature 1998, 393:537-544.
- [19]Camus J-C, Pryor MJ, Madigue C, Cole ST: Re-annotation of the genome sequence of Mycobacterium tuberculosis H37Rv. Microbiology 2002, 148:2967-2973.
- [20]Fleischmann RD, Alland D, Eisen JA, Carpenter L, White O, Peterson J, DeBoy R, Dodson R, Gwinn M, Haft D, et al.: Whole-Genome Comparison of Mycobacterium tuberculosis Clinical and Laboratory Strains. J Bacteriol 2002, 184:5479-5490.
- [21]Alland D, Whittam TS, Murray MB, Cave MD, Hazbon MH, Dix K, Kokoris M, Duesterhoeft A, Eisen JA, Fraser CM, Fleischmann RD: Modeling Bacterial Evolution with Comparative-Genome-Based Marker Systems: Application to Mycobacterium tuberculosis Evolution and Pathogenesis. J Bacteriol 2003, 185:3392-3399.
- [22]Filliol I, Motiwala AS, Cavatore M, Qi W, HazbÃn MH, Bobadilla del Valle M, Fyfe J, Garcaa-Garcaa L, Rastogi N, Sola C, et al.: Global Phylogeny of Mycobacterium tuberculosis Based on Single Nucleotide Polymorphism (SNP) Analysis: Insights into Tuberculosis Evolution, Phylogenetic Accuracy of Other DNA Fingerprinting Systems, and Recommendations for a Minimal Standard SNP Set. J Bacteriol 2006, 188:759-772.
- [23]Lew JM, Kapopoulou A, Jones LM, Cole ST: TubercuList : 10 years after. Tuberculosis (Edinb) 2011, 91:1-7.
- [24]Galagan JE, Sisk P, Stolte C, Weiner B, Koehrsen M, Wymore F, Reddy TBK, Zucker JD, Engels R, Gellesch M, et al.: TB database 2010: Overview and update. Tuberculosis (Edinb) 2010, 90:225-235.
- [25]Cole ST: Comparative mycobacterial genomics as a tool for drug target and antigen discovery. Eur Respir J 2002, 20:78s-86s.
- [26]van Embden JD, Cave MD, Crawford JT, Dale JW, Eisenach KD, Gicquel B, Hermans P, Martin C, McAdam R, Shinnick TM: Strain identification of Mycobacterium tuberculosis by DNA fingerprinting: recommendations for a standardized methodology. J Clin Microbiol 1993, 31:406-409.
- [27]Stahl DA, Urbance JW: The division between fast- and slow-growing species corresponds to natural relationships among the mycobacteria. J Bacteriol 1990, 172:116-124.
- [28]Rogall T, Wolters JR, Flohr T, Bottger EC: Towards a Phylogeny and Definition of Species at the Molecular Level within the Genus Mycobacterium. Int J Syst Bacteriol 1990, 40:323-330.
- [29]Wassenaar T, Bohlin J, Binnewies T, Ussery D: Genome Comparison of Bacterial Pathogens. Microbial Pathogenomics 2009, 6:1-20.
- [30]Ussery DW, Wassenaar TM, Borini S: Computing for Comparative Microbial Genomics: Bioinformatics for Microbiologists. London: Springer; 2009.
- [31]Brosch R, Pym AS, Gordon SV, Cole ST: The evolution of mycobacterial pathogenicity: clues from comparative genomics. Trends Microbiol 2001, 9:452-458.
- [32]Cole ST, Eiglmeier K, Parkhill J, James KD, Thomson NR, Wheeler PR, Honore N, Garnier T, Churcher C, Harris D, et al.: Massive gene decay in the leprosy bacillus. Nature 2001, 409:1007-1011.
- [33]Marmiesse M, Brodin P, Buchrieser C, Gutierrez C, Simoes N, Vincent V, Glaser P, Cole ST, Brosch R: Macro-array and bioinformatic analyses reveal mycobacterial ‘core’ genes, variation in the ESAT-6 gene family and new phylogenetic markers for the Mycobacterium tuberculosis complex. Microbiology 2004, 150:483-496.
- [34]Jungblut PR, Schaible UE, Mollenkopf HJ, Zimny-Arndt U, Raupach B, Mattow J, Halada P, Lamer S, Hagens K, Kaufmann SHE: Comparative proteome analysis of Mycobacterium tuberculosis and Mycobacterium bovis BCG strains: towards functional genomics of microbial pathogens. Mol Microbiol 1999, 33:1103-1117.
- [35]Zakham F, Belayachi L, Ussery D, Akrim M, Benjouad A, El Aouad R, Ennaji M: Mycobacterial species as Case study of comparative genome analysis. Cell Mol Biol 2011, 57:1462-1469.
- [36]Domenech P, Barry Iii CE, Cole ST: Mycobacterium tuberculosis in the post-genomic age. Curr Opin Microbiol 2001, 4:28-34.
- [37]Stinear TP, Seemann T, Harrison PF, Jenkin GA, Davies JK, Johnson PDR, Abdellah Z, Arrowsmith C, Chillingworth T, Churcher C, et al.: Insights from the complete genome sequence of Mycobacterium marinum on the evolution of Mycobacterium tuberculosis. Genome Res 2008, 18:729-741.
- [38]Becq J, Gutierrez MC, Rosas-Magallanes V, Rauzier J, Gicquel B, Neyrolles O, Deschavanne P: Contribution of Horizontally Acquired Genomic Islands to the Evolution of the Tubercle Bacilli. Mol Biol Evol 2007, 24:1861-1871.
- [39]Stinear TP, Seemann T, Pidot S, Frigui W, Reysset G, Garnier T, Meurice G, Simon D, Bouchier C, Ma L, et al.: Reductive evolution and niche adaptation inferred from the genome of Mycobacterium ulcerans, the causative agent of Buruli ulcer. Genome Res 2007, 17:192-200.
- [40]Li L, Bannantine JP, Zhang Q, Amonsin A, May BJ, Alt D, Banerji N, Kanjilal S, Kapur V: The complete genome sequence of Mycobacterium avium subspecies paratuberculosis. Proc Natl Acad Sci U S A 2005, 102:12344-12349.
- [41]Marri PR, Bannantine JP, Golding GB: Comparative genomics of metabolic pathways in Mycobacterium species: gene duplication, gene decay and lateral gene transfer. FEMS Microbiol Rev 2006, 30:906-925.
- [42]Cole ST: Comparative mycobacterial genomics. Curr Opin Microbiol 1998, 1:567-571.
- [43]DeBruyn JM, Mead TJ, Sayler GS: Horizontal Transfer of PAH Catabolism Genes in Mycobacterium: Evidence from Comparative Genomics and Isolated Pyrene-Degrading Bacteria. Environ Sci Technol 2011.
- [44]Sweeney KA, Dao DN, Goldberg MF, Hsu T, Venkataswamy MM, Henao-Tamayo M, Ordway D, Sellers RS, Jain P, Chen B, et al.: A recombinant Mycobacterium smegmatis induces potent bactericidal immunity against Mycobacterium tuberculosis. Nat Med 2011, 17:1261-1268.
- [45]Willenbrock H, Hallin P, Wassenaar T, Ussery D: Characterization of probiotic Escherichia coli isolates with a novel pan-genome microarray. Genome Biol 2007, 8:R267. BioMed Central Full Text
- [46]Lagesen K, Hallin P, Radland EA, Starfeldt H-H, Rognes T, Ussery DW: RNAmmer: consistent and rapid annotation of ribosomal RNA genes. Nucleic Acids Res 2007, 35:3100-3108.
PDF