期刊论文详细信息
Journal of Environmental Health Science Engineering
CFD modeling of incinerator to increase PCBs removal from outlet gas
Jalil Jaafari1  Golbarg Dastforoushan2  Ramin Nabizadeh3  Nematallah Jaafarzadeh4  Kamyar Yaghmaeian3 
[1] Department of Environmental Health, School of Public Health, Guilan University of Medical Sciences, Rasht, Iran;Department of Environmental Engineering, Islamic Azad University, Tehran, Iran;Center for Solid Waste Research, Institute for Environmental Research, Tehran University of Medical Sciences, Tehran, Iran;Environmental Technologies Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
关键词: Thermal degradation;    Baffle;    Fluent model;    PCB;    Incinerator;   
Others  :  1226931
DOI  :  10.1186/s40201-015-0212-0
 received in 2015-03-03, accepted in 2015-07-21,  发布年份 2015
PDF
【 摘 要 】

Incineration of persistent organic pollutants (POPs) is an important alternative way for disposal of this type of hazardous waste. PCBs are very stable compounds and do not decompose readily. Individuals can be exposed to PCBs through several ways and damaged by their effects. A well design of a waste incinerator will convert these components to unharmfull materials. In this paper we have studied the design parameters of an incinerator with numerical approaches. The CFD software Fluent 6.3 is used for modelling of an incinerator. The effects of several baffles inside the incinerator on flow distribution and heat is investigated. The results show that baffles can reduce eddy flows, increase retaining times, and efficiencies. The baffles reduced cool areas and increased efficiencies of heat as maximum temperature in two and three baffle embedded incinerator were 100 and 200 °C higher than the non-baffle case, respectively. Also the gas emission leaves the incinerator with a lower speed across a longer path and the turbulent flow in the incinerator is stronger.

【 授权许可】

   
2015 Yaghmaeian et al.

【 预 览 】
附件列表
Files Size Format View
20150926093322902.pdf 1212KB PDF download
Fig. 5. 33KB Image download
Fig. 4. 39KB Image download
Fig. 3. 41KB Image download
Fig. 2. 45KB Image download
Fig. 1. 26KB Image download
【 图 表 】

Fig. 1.

Fig. 2.

Fig. 3.

Fig. 4.

Fig. 5.

【 参考文献 】
  • [1]Wu M-H, Lin C-L, Zeng W-Y. Effect of waste incineration and gasification processes on heavy metal distribution. Fuel Process Technol. 2014; 125:67-72.
  • [2]Sobiecka E, Obraniak A, Antizar-Ladislao B. Influence of mixture ratio and pH to solidification/stabilization process of hospital solid waste incineration ash in Portland cement. Chemosphere. 2014; 111:18-23.
  • [3]Consonni S, Giugliano M, Grosso M. Alternative strategies for energy recovery from municipal solid waste: Part A: Mass and energy balances. Waste Manag. 2005; 25:123-35.
  • [4]Wäger P, Hischier R, Eugster M. Environmental impacts of the Swiss collection and recovery systems for Waste Electrical and Electronic Equipment (WEEE): A follow-up. Sci Total Environ. 2011; 409:1746-56.
  • [5]Tsiliyannis C. End-of-life flows of multiple cycle consumer products. Waste Manag. 2011; 31:2302-18.
  • [6]Jaafari J, Mesdaghinia A, Nabizadeh R, Hoseini M, Mahvi AH. Influence of upflow velocity on performance and biofilm characteristics of Anaerobic Fluidized Bed Reactor (AFBR) in treating high-strength wastewater. J Environ Health Sci Eng. 2014; 12:139. BioMed Central Full Text
  • [7]Esfandyari Y, Mahdavi Y, Seyedsalehi M, Hoseini M, Safari GH, Ghozikali MG, Kamani H, Jaafari J. Degradation and biodegradability improvement of the olive mill wastewater by peroxi-electrocoagulation/electrooxidation-electroflotation process with bipolar aluminum electrodes. Environmental Science and Pollution Research. 2014; 22(8):6288-97.
  • [8]Jafari J, Mesdaghinia A, Nabizadeh R, Farrokhi M, Mahvi AH. Investigation of Anaerobic Fluidized Bed Reactor/Aerobic Mov-ing Bed Bio Reactor (AFBR/MMBR) System for Treatment of Currant Wastewater. Iran J Pub Health. 2013; 42:860-7.
  • [9]Altarawneh M, Dlugogorski BZ, Kennedy EM, Mackie JC. Mechanisms for formation, chlorination, dechlorination and destruction of polychlorinated dibenzo- p-dioxins and dibenzofurans (PCDD/Fs). Prog Energy Combust Sci. 2009; 35:245-74.
  • [10]Van Caneghem J, Block C, Van Brecht A, Wauters G, Vandecasteele C. Mass balance for POPs in hazardous and municipal solid waste incinerators. Chemosphere. 2010; 78:701-8.
  • [11]Toxic Substances Control Act (TSCA). 2000.
  • [12]Van Caneghem J, Block C, Vandecasteele C. Destruction and formation of dioxin-like PCBs in dedicated full scale waste incinerators. Chemosphere. 2014; 94:42-7.
  • [13]Nasserzadeh V, Swithenbank J, Scott D, Jones B. Design optimization of a large municipal solid waste incinerator. Waste Manag. 1991; 11:249-61.
  • [14]Liu P-Y, Zheng M-H, Zhang B, Xu X-B. Mechanism of PCBs formation from the pyrolysis of chlorobenzenes. Chemosphere. 2001; 43:783-5.
  • [15]Ishikawa Y, Noma Y, Yamamoto T, Mori Y, Sakai S-I. PCB decomposition and formation in thermal treatment plant equipment. Chemosphere. 2007; 67:1383-93.
  • [16]Van Caneghem J, Block C, Vermeulen I, Van Brecht A, Van Royen P, Jaspers M, Wauters G, Vandecasteele C. Mass balance for POPs in a real scale fluidized bed combustor co-incinerating automotive shredder residue. J Hazard Mater. 2010; 181:827-35.
  • [17]San José R, Pérez J, González R. The evaluation of the air quality impact of an incinerator by using MM5-CMAQ-EMIMO modeling system: North of Spain case study. Environ Int. 2008; 34:714-9.
  • [18]Stanmore B. Modeling the formation of PCDD/F in solid waste incinerators. Chemosphere. 2002; 47:565-73.
  • [19]Goh Y, Lim C, Zakaria R, Chan K, Reynolds G, Yang Y, Siddall R, Nasserzadeh V, Swithenbank J. Mixing, modelling and measurements of incinerator bed combustion. Process Saf Environ Prot. 2000; 78:21-32.
  • [20]Huang H, Buekens A. Chemical kinetic modeling of de novo synthesis of PCDD/F in municipal waste incinerators. Chemosphere. 2001; 44:1505-10.
  • [21]Khiari B, Marias F, Zagrouba F, Vaxelaire J. Transient mathematical modelling of a fluidized bed incinerator for sewage sludge. J Clean Prod. 2008; 16:178-91.
  • [22]Tomaz E, Maciel Filho R. Steady state modeling and numerical simulation of the rotary kiln incinerator and afterburner system. Comput Chem Eng. 1999; 23:S431-4.
  • [23]Joseph J, Santoleri JR, Theodore L. Introduction to hazardous waste incineration. 2nd ed. John Wiley and Sons, New York: Wiley-Interscience; 2000.
  • [24]Fluent M. Fluent Inc. Chapter. 2003; 6:14-6.
  • [25]Nasserzadeh V, Swithenbank J, Jones B. Three-dimensional modelling of a municipal solid-waste incinerator. J Inst Energy. 1991; 64:166-75.
  • [26]Wu J-L, Lin T-C, Wang L-C, Chang-Chien G-P. Memory effects of polychlorinated dibenzo-p-dioxin and furan emissions in a laboratory waste incinerator. Aerosol Air Qual Res. 2014; 14:1168-78.
  文献评价指标  
  下载次数:80次 浏览次数:17次