期刊论文详细信息
Lipids in Health and Disease
Synthesis of lipophilic tyrosyl esters derivatives and assessment of their antimicrobial and antileishmania activities
Youssef Gargouri2  Sami Sayadi1  Dhafer Laouini3  Mohamed Bouaziz1  Rabiaa Manel Sghair3  Imen Aissa1 
[1] Laboratoire des Bioprocédés, Centre de Biotechnologie de Sfax (CBS). BP 1177, 3018 Sfax, Université de Sfax, Tunisie;Laboratoire de Biochimie et de Génie Enzymatique des Lipases, Ecole Nationale d'Ingénieurs de Sfax (ENIS). Route de Soukra, BP 1173, 3038 Sfax, Université de Sfax,Tunisie;Groupe Immunobiologie des Leishmanioses, Labratoire de Transmission, Contrôle et Immunobiologie des Infections (LTCII), Institut Pasteur de Tunis, 13, place Pasteur, B.P 74, 1002 Tunis-Belvédère, Tunisie
关键词: leishmanicidal activity;    antimicrobial activity;    antioxidant;    Tyrosol;   
Others  :  1160371
DOI  :  10.1186/1476-511X-11-13
 received in 2011-12-16, accepted in 2012-01-20,  发布年份 2012
PDF
【 摘 要 】

Background

Preparation of tyrosyl lipophilic derivatives was carried out as a response to the food, cosmetic and pharmaceutical industries' increasing demand for new lipophilic antioxidants.

Results

A large series of tyrosyl esters (TyC2 to TyC18:1) with increasing lipophilicity was synthesized in a good yield using lipase from Candida antarctica (Novozyme 435). Spectroscopic analyses of purified esters showed that the tyrosol was esterified on the primary hydroxyl group. Synthetized compounds were evaluated for either their antimicrobial activity, by both diffusion well and minimal inhibition concentration (MIC) methods, or their antileishmanial activity against Leishmania major and Leishmania infantum parasite species.

Among all the tested compounds, our results showed that only TyC8, TyC10 and TyC12 exhibited antibacterial and antileishmanial activities. When MIC and IC50 values were plotted against the acyl chain length of each tyrosyl derivative, TyC10 showed a parabolic shape with a minimum value. This nonlinear dependency with the increase of the chain length indicates that biological activities are probably associated to the surfactant effectiveness of lipophilic derivatives.

Conclusion

These results open up potential applications to use medium tyrosyl derivatives surfactants, antioxidants, antimicrobial and antileishmanial compounds in cosmetic, food and pharmaceutical industries.

【 授权许可】

   
2012 Aissa et al; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150410103005970.pdf 450KB PDF download
Figure 2. 23KB Image download
Figure 1. 24KB Image download
【 图 表 】

Figure 1.

Figure 2.

【 参考文献 】
  • [1]Shahidi F: Functional Foods: Their Role in Health Promotion and Disease Prevention. J Food Sci 2004, 69:146-149.
  • [2]Ortega-Garcia F, Blanco S, Angeles Peinado M, Peragon J: Polyphenol oxidase and its relationship with oleuropein concentration in fruits and leaves of olive (Olea europaea) cv. 'Picual' trees during fruit ripening. Tree Physiol 2008, 28:45-54.
  • [3]Cushnie TPT, Lamb AJ: Antimicrobial activity of flavonoids. Int J Antimicrob Agents 2005, 26:343-356.
  • [4]Fki I, Allouche N, Sayadi S: The use of polyphenolic extract, purified hydroxytyrosol and 3, 4-dihydroxyphenyl acetic acid from olive mill wastewater for the stabilization of refined oils: a potential alternative to synthetic antioxidants. Food chem 2005, 93:197-204.
  • [5]Caruso D, Berra B, Giavarini F, Cortesi N, Fedeli E, Galli G: Effect of virgin olive oil compounds on in vitro oxidation of human low density lipoproteins. Nutr Metab Cardiovasc Dis 1999, 9:102-107.
  • [6]De la Puerta R, Ruiz-Gutierrez V, Hoult JR: Inhibition of leukocyte 5-lipoxygenase by phenolics from virgin olive oil. Biochem Pharmacol 1999, 57:445-449.
  • [7]Giovannini C, Straface E, Modesti D, Coni E, Cantafora A, De Vincenzi M, Malorni W, Masella R: Tyrosol, the major olive oil biophenol, protects against oxidized LDL-induced injury in Caco2 cells. J Nutr 1999, 129:1269-1277.
  • [8]Plotnikov MB, Chernysheva GA, Smol'yakova VI, Maslov MY, Cherkashina IV, Krysin AP, Sorokina IV, Tolstikova TG: Effect of n-tyrosol on blood viscosity and platelet aggregation. Bull Exp Biol Med 2007, 143:61-63.
  • [9]Chernyshova GA, Plotnikov MB, Smol'yakova VI, Golubeva IV, Aliev OI, Tolstikova TG, Krysin AP, Sorokina IV: Antiarrhythmic activity of n-tyrosol during acute myocardial ischemia and reperfusion. Bull Exp Biol Med 2007, 143:689-691.
  • [10]Vauzour D, Corona G, Spencer JPE: Caffeic acid, tyrosol and p-coumaric acid are potent inhibitors of 5-S-cysteinyl-dopamine induced neurotoxicity. Arch Biochem Biophys 2010, 501:106-111.
  • [11]Fragopoulou E, Nomikos T, Karantonis HC, Apostolakis C, Pliakis E, Samiotaki M, Panayotou G, Antonopoulou S: J Agric Food Chem. 2007, 55:80-89.
  • [12]Mateos R, Espartero JL, Trujillo M, Rios JJ, Leon- Camacho M, Alcudia F, Cert A: Determination of phenols, flavones, and lignans in virgin olive oils by solid-phase extraction and high-performance liquid chromatography with diode array ultraviolet detection. J Agric Food Chem 2001, 49:2185-2192.
  • [13]Yamaguchi T, Machida K, Kikuchi M: Analysis of the components of Ligustrum species. XVII. On the components of the flower of Ligustrum oValifolium Hassk. Annu Rep Tohoku Coll Pharm 1995, 42:105-107.
  • [14]Acevedo L, Martinez E, Castaneda P, Franzblau S, Timmermann BN, Linares E, Bye R, Mata R: New phenylethanoids from Buddleja cordata. subsp. Cordata. Planta Med 2000, 66:257-261.
  • [15]Bianco A, Melchioni C, Ramunno A, Romeo G, Uccella N: Phenolic components of Olea europaea-isolation of tyrosol derivatives. Nat Prod Res 2004, 18:29-32.
  • [16]Oura S, Ashida Y, Kanamori Y, Oshima T, Mizutsu T, Kawato S, Suginami K, Abe Y: Preparation of tyrosol esters and their use as lipid-metabolism enzyme inhibitors, preservatives, and reagents for biochemical research. JP-2003 026636
  • [17]Aissa I, Bouaziz M, Ghamgui H, Kammoun A, Miled N, Sayadi S, Gargouri Y: Optimization of Lipase-Catalysed synthesis of acetylated tyrosol by response surface methodology. J Agric Food Chem 2007, 55:10298-10305.
  • [18]Mateos R, Trujillo M, Pereira-Caro G, Madrona A, Cert A, Espartero JL: New lipophilic tyrosyl esters. Comparative antioxidant evaluation with hydroxytyrosyl esters. J Agric Food Chem 2008, 56:10960-10966.
  • [19]Ahn EY, Jiang Y, Zhang Y, Son EM, You S, Kang S, Park JS, Jun JH, Lee BJ, Kimi DKY: Cytotoxicity of p-tyrosol and its derivatives may correlate with the inhibition of DNA replication initiation. Oncol Rep 2008, 19:527-534.
  • [20]Singh IP, Jain SK, Kaur A, Singh S, Kumar R, Garg P, Sharma SS, Arora SK: Synthesis and Antileishmanial activity of Piperoyl-Amino Acid Conjugates. Eur J Med Chem 2010, 45:3439-3445.
  • [21]Coulon D, Girardin M, Rovel B, Ghoul M: Comparison of direct esterification and transesterification of fructose by Candida antartica lipase. Biotech Lett 1995, 2:183-186.
  • [22]Selmi B, Gontier E, Ergan F, Thomas D: Effects of fatty acid chain length and unsaturation number on triglyceride synthesis catalyzed by immobilized lipase in solvent-free medium. Enz Microb Technol 1998, 23:182-186.
  • [23]Kebaier C, Louzir H, Chenik M, Ben Salah A, Dellagi K: Heterogeneity of wild Leishmania major isolates in experimental murine pathogenicity and specific immune response. Infect Immun 2001, 69:4906-4915.
  • [24]Aoun K, Bouratbine A, Harrat Z, Belkaied M, Bel hadj Ali S: Particular profile of the zymodemes of Leishmania infantum causing visceral leishmaniasis in Tunisia. Bull Soc Patho Exot 2001, 94:375-377.
  • [25]Lucas R, Comelles F, Alcantra D, Maldonado OS, Curcuroze M, Parra JL, Morales JC: Surface-Active Properties of Lipophilic Antioxidants Tyrosol and Hydroxytyrosol Fatty Acid Esters: A Potential Explanation for the Nonlinear Hypothesis of the Antioxidant Activity in Oil-in-Water Emulsions. J Agric Food Chem 2010, 58:8021-8026.
  • [26]Laguerre M, LopezGiraldo LJ, Lecomte J, Figueroa-Espinoza MC, Barea B, Weiss J, Decker EA, Villeneuve P: Chain length affects antioxidant properties of chlorogenate esters in emulsion: The cutoff theory behind the polar paradox. J Agric Food Chem 2009, 57:11335-11342.
  • [27]Ferguson J: The uses of chemical potentials as indices of toxicity. Proc R Soc London, Ser B 1939, 127:387-404.
  • [28]Balgavy P, Devinsky F: Cut-off effects in biological activities of surfactants. Adv Colloid Interface Sci 1996, 66:23-63.
  • [29]Cso'ka G, Marton S, Zelko R, Otomo N, Antal I: Application of sucrose fatty acid esters in transdermal therapeutic systems. Eur j Pharm Biopharm 2007, 65:233-237.
  • [30]Paik HD, Bae SS, Park SH, Pan JG: Identification and partial characterisation of tochicin, a bacteriocin produced by Bacillus thuringiensis subsp. tochigiensis. J Ind Microbiol Biotech 1997, 19:294-298.
  • [31]Jack RW, Tagg JR, Ray B: Bacteriocins of Gram positive bacteria. Microbiol Rev 1995, 59:171-200.
  • [32]NCCLS: Performance standards for antimicrobial disk susceptibility testing. 1997. National Committee for Clinical Laboratory Standards, 6th International Supplement, Wayne Pa. M2-A6
  • [33]Dutta A, Bandyopadhyay S, Mandal C, Chatterjee M: Development of a modified MTT assay for screening antimonial resistant field isolates of Indian visceral Leishmaniasis. Parasito Int 2005, 54:119-122.
  文献评价指标  
  下载次数:11次 浏览次数:20次