期刊论文详细信息
Journal of Cardiovascular Magnetic Resonance
In vivo characterization of rodent cyclic myocardial perfusion variation at rest and during adenosine-induced stress using cine-ASL cardiovascular magnetic resonance
Frank Kober1  Monique Bernard1  Thibaut Capron1  Thomas Troalen1 
[1] Aix-Marseille Université, CNRS, CRMBM UMR 7339, 27 Bd Jean Moulin, 13385 Marseille Cedex 5, France
关键词: Rat heart;    Perfusion;    Adenosine;    Microcirculation;    Myocardial blood flow;   
Others  :  801680
DOI  :  10.1186/1532-429X-16-18
 received in 2013-09-06, accepted in 2014-02-10,  发布年份 2014
PDF
【 摘 要 】

Background

Assessment of cyclic myocardial blood flow (MBF) variations can be an interesting addition to the characterization of microvascular function and its alterations. To date, totally non-invasive in vivo methods with this capability are still lacking. As an original technique, a cine arterial spin labeling (ASL) cardiovascular magnetic resonance approach is demonstrated to be able to produce dynamic MBF maps across the cardiac cycle in rats.

Method

High-resolution MBF maps in left ventricular myocardium were computed from steady-state perfusion-dependent gradient-echo cine images produced by the cine-ASL sequence. Cyclic changes of MBF over the entire cardiac cycle in seven normal rats were analyzed quantitatively every 6ms at rest and during adenosine-induced stress.

Results

The study showed a significant MBF increase from end-systole (ES) to end-diastole (ED) in both physiological states. Mean MBF over the cardiac cycle within the group was 5.5 ± 0.6 mL g-1 min-1 at rest (MBFMin = 4.7 ± 0.8 at ES and MBFMax = 6.5 ± 0.6 mL g-1 min-1 at ED, P = 0.0007). Mean MBF during adenosine-induced stress was 12.8 ± 0.7mL g-1 min-1 (MBFMin = 11.7±1.0 at ES and MBFMax = 14.2 ± 0.7 mL g-1 min-1 at ED, P = 0.0007). MBF percentage relative variations were significantly different with 27.2 ± 9.3% at rest and 17.8 ± 7.1% during adenosine stress (P = 0.014). The dynamic analysis also showed a time shift of peak MBF within the cardiac cycle during stress.

Conclusion

The cyclic change of myocardial perfusion was examined by mapping MBF with a steady-pulsed ASL approach. Dynamic MBF maps were obtained with high spatial and temporal resolution (6ms) demonstrating the feasibility of non-invasively mapping cyclic myocardial perfusion variation at rest and during adenosine stress. In a pathological context, detailed assessment of coronary responses to infused vasodilators may give valuable complementary information on microvascular functional defects in disease models.

【 授权许可】

   
2014 Troalen et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20140708011929330.pdf 1599KB PDF download
Figure 7. 41KB Image download
Figure 6. 58KB Image download
Figure 5. 80KB Image download
Figure 4. 47KB Image download
Figure 3. 84KB Image download
Figure 2. 122KB Image download
Figure 1. 78KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

Figure 7.

【 参考文献 】
  • [1]Gregg DE, Sabiston DC Jr: Effect of cardiac contraction on coronary blood flow. Circulation 1957, 15:14-20.
  • [2]Hoffman JI, Spaan JA: Pressure-flow relations in coronary circulation. Physiol Rev 1990, 70:331-390.
  • [3]Morgenstern C, Holjes U, Arnold G, Lochner W: The influence of coronary pressure and coronary flow on intracoronary blood volume and geometry of the left ventricle. Pflugers Arch 1973, 340:101-111.
  • [4]Spaan JA, Breuls NP, Laird JD: Diastolic-systolic coronary flow differences are caused by intramyocardial pump action in the anesthetized dog. Circ Res 1981, 49:584-593.
  • [5]Klassen GA, Barclay KD, Wong R, Paton B, Wong AY: Red cell flux during the cardiac cycle in the rabbit myocardial microcirculation. Cardiovasc Res 1997, 34:504-514.
  • [6]Ashikawa K, Kanatsuka H, Suzuki T, Takishima T: Phasic blood flow velocity pattern in epimyocardial microvessels in the beating canine left ventricle. Circ Res 1986, 59:704-711.
  • [7]Kajiya F, Tsujioka K, Ogasawara Y, Hiramatsu O, Wada Y, Goto M, Yanaka M: Analysis of the characteristics of the flow velocity waveforms in left atrial small arteries and veins in the dog. Circ Res 1989, 65:1172-1181.
  • [8]Yada T, Hiramatsu O, Kimura A, Goto M, Ogasawara Y, Tsujioka K, Yamamori S, Ohno K, Hosaka H, Kajiya F: In vivo observation of subendocardial microvessels of the beating porcine heart using a needle-probe videomicroscope with a CCD camera. Circ Res 1993, 72:939-946.
  • [9]Wu EX, Tang H, Wong KK, Wang J: Mapping cyclic change of regional myocardial blood volume using steady-state susceptibility effect of iron oxide nanoparticles. J Magn Reson Imaging 2004, 19:50-58.
  • [10]Rodriguez I, Ennis DB, Wen H: Noninvasive measurement of myocardial tissue volume change during systolic contraction and diastolic relaxation in the canine left ventricle. Magn Reson Med 2006, 55:484-490.
  • [11]Radjenovic A, Biglands JD, Larghat A, Ridgway JP, Ball SG, Greenwood JP, Jerosch-Herold M, Plein S: Estimates of systolic and diastolic myocardial blood flow by dynamic contrast-enhanced MRI. Magn Reson Med 2010, 64:1696-1703.
  • [12]Coolen BF, Moonen RP, Paulis LE, Geelen T, Nicolay K, Strijkers GJ: Mouse myocardial first-pass perfusion MR imaging. Magn Reson Med 2010, 64:1658-1663.
  • [13]Makowski M, Jansen C, Webb I, Chiribiri A, Nagel E, Botnar R, Kozerke S, Plein S: First-pass contrast-enhanced myocardial perfusion MRI in mice on a 3-T clinical MR scanner. Magn Reson Med 2010, 64:1592-1598.
  • [14]Jogiya R, Makowski M, Phinikaridou A, Patel AS, Jansen C, Zarinabad N, Chiribiri A, Botnar R, Nagel E, Kozerke S, Plein S: Hyperemic stress myocardial perfusion cardiovascular magnetic resonance in mice at 3 Tesla: initial experience and validation against microspheres. J Cardiovasc Magn Reson 2013, 15(1):62. BioMed Central Full Text
  • [15]van Nierop BJ, Coolen BF, Dijk WJ, Hendriks AD, de Graaf L, Nicolay K, Strijkers GJ: Quantitative first-pass perfusion MRI of the mouse myocardium. Magn Reson Med 2013, 69:1735-1744.
  • [16]Belle V, Kahler E, Waller C, Rommel E, Voll S, Hiller KH, Bauer WR, Haase A: In vivo quantitative mapping of cardiac perfusion in rats using a noninvasive MR spin-labeling method. J Magn Reson Imaging 1998, 8:1240-1245.
  • [17]Waller C, Hiller KH, Voll S, Haase A, Ertl G, Bauer WR: Myocardial perfusion imaging using a non-contrast agent MR imaging technique. Int J Cardiovasc Imaging 2001, 17:123-132.
  • [18]Kober F, Iltis I, Izquierdo M, Desrois M, Ibarrola D, Cozzone PJ, Bernard M: High-resolution myocardial perfusion mapping in small animals in vivo by spin-labeling gradient-echo imaging. Magn Reson Med 2004, 51:62-67.
  • [19]Kober F, Iltis I, Cozzone PJ, Bernard M: Myocardial blood flow mapping in mice using high-resolution spin labeling magnetic resonance imaging: influence of ketamine/xylazine and isoflurane anesthesia. Magn Reson Med 2005, 53:601-606.
  • [20]Streif JU, Nahrendorf M, Hiller KH, Waller C, Wiesmann F, Rommel E, Haase A, Bauer WR: In vivo assessment of absolute perfusion and intracapillary blood volume in the murine myocardium by spin labeling magnetic resonance imaging. Magn Reson Med 2005, 53:584-592.
  • [21]Nahrendorf M, Streif JU, Hiller KH, Hu K, Nordbeck P, Ritter O, Sosnovik D, Bauer L, Neubauer S, Jakob PM, Ertl G, Spindler M, Bauer WR: Multimodal functional cardiac MRI in creatine kinase-deficient mice reveals subtle abnormalities in myocardial perfusion and mechanics. Am J Physiol Heart Circ Physiol 2006, 290:H2516-2521.
  • [22]Vandsburger MH, Janiczek RL, Xu Y, French BA, Meyer CH, Kramer CM, Epstein FH: Improved arterial spin labeling after myocardial infarction in mice using cardiac and respiratory gated look-locker imaging with fuzzy C-means clustering. Magn Reson Med 2010, 63:648-657.
  • [23]Jacquier A, Kober F, Bun S, Giorgi R, Cozzone PJ, Bernard M: Quantification of myocardial blood flow and flow reserve in rats using arterial spin labeling MRI: comparison with a fluorescent microsphere technique. NMR Biomed 2011, 24(9):1047-1053.
  • [24]Campbell-Washburn AE, Price AN, Wells JA, Thomas DL, Ordidge RJ, Lythgoe MF: Cardiac arterial spin labeling using segmented ECG-gated Look-Locker FAIR: variability and repeatability in preclinical studies. Magn Reson Med 2013, 69(1):238-247.
  • [25]Northrup BE, McCommis KS, Zhang HS, Ray S, Woodard PK, Gropler RJ, Zheng J: Resting myocardial perfusion quantification with CMR arterial spin labeling at 1.5 T and 3.0 T. J Cardiovasc Magn Reson 2008, 10:53. BioMed Central Full Text
  • [26]Zun ZH, Varadarajan P, Pai RG, Wong EC, Nayak KS: Arterial spin labeled CMR detects clinically relevant increase in myocardial blood flow with vasodilation. Jacc-Cardiovasc Imag 2011, 4:1253-1261.
  • [27]Troalen T, Capron T, Cozzone PJ, Bernard M, Kober F: Cine-ASL: A steady-pulsed arterial spin labeling method for myocardial perfusion mapping in mice. Part I. Experimental study. Magn Reson Med 2013, 70:1389-1398.
  • [28]Capron T, Troalen T, Cozzone PJ, Bernard M, Kober F: Cine-ASL: A steady-pulsed arterial spin labeling method for myocardial perfusion mapping in mice. Part II. Theoretical model and sensitivity optimization. Magn Reson Med 2013, 70:1399-1408.
  • [29]Troalen T, Capron T, Cozzone PJ, Bernard M, Kober F: Cyclic Variation of Myocardial Blood Flow Assessed with cine-ASL. Abstracts of ESMRMB (European Society for Magnetic Resonance in Medicine and Biology) 2012, the 29th Annual Scientific Meeting. Lisbon, Portugal. October 4–6, 2012. MAGMA 2012, 25(Suppl 1):94.
  • [30]Takuma S, Suehiro K, Cardinale C, Hozumi T, Yano H, Shimizu J, Mullis-Jansson S, Sciacca R, Wang J, Burkhoff D, Di Tullio MR, Homma S, et al.: Anesthetic inhibition in ischemic and non ischemic murine heart: comparison with conscious echocardiographic approach. Am J Physiol Heart Circ Physiol 2001, 280:H2364-2370.
  • [31]Iltis I, Kober F, Dalmasso C, Lan C, Cozzone PJ, Bernard M: In vivo assessment of myocardial blood flow in rat heart using magnetic resonance imaging: effect of anesthesia. J Magn Reson Imaging 2005, 22:242-247.
  • [32]Waller C, Kahler E, Hiller KH, Hu K, Nahrendorf M, Voll S, Haase A, Ertl G, Bauer WR: Myocardial perfusion and intracapillary blood volume in rats at rest and with coronary dilatation: MR imaging in vivo with use of a spin-labeling technique. Radiology 2000, 215:189-197.
  • [33]Deichmann R, Haase A: Quantification of T1 Values by Snapshot-Flash Nmr Imaging. J Magn Reson 1992, 96:608-612.
  • [34]Davies JE, Whinnett ZI, Francis DP, Manisty CH, Aguado-Sierra J, Willson K, Foale RA, Malik IS, Hughes AD, Parker KH, Mayet J: Evidence of a dominant backward-propagating “suction” wave responsible for diastolic coronary filling in humans, attenuated in left ventricular hypertrophy. Circulation 2006, 113:1768-1778.
  • [35]Chilian WM, Eastham CL, Layne SM, Marcus ML: Small vessel phenomena in the coronary microcirculation: phasic intramyocardial perfusion and coronary microvascular dynamics. Prog Cardiovasc Dis 1988, 31:17-38.
  • [36]Kajiya M, Hirota M, Inai Y, Kiyooka T, Morimoto T, Iwasaki T, Endo K, Mohri S, Shimizu J, Yada T, Ogasawara Y, Naruse K, Ohe T, Kajiya F: Impaired NO-mediated vasodilation with increased superoxide but robust EDHF function in right ventricular arterial microvessels of pulmonary hypertensive rats. Am J Physiol Heart Circ Physiol 2007, 292:H2737-2744.
  • [37]Kajiya F, Yada T, Hiramatsu O, Ogasawara Y, Inai Y, Kajiya M: Coronary microcirculation in the beating heart. Med Biol Eng Comput 2008, 46:411-419.
  • [38]Wong EC, Buxton RB, Frank LR: Implementation of quantitative perfusion imaging techniques for functional brain mapping using pulsed arterial spin labeling. NMR Biomed 1997, 10:237-249.
  • [39]Sato A, Terata K, Miura H, Toyama K, Loberiza FR Jr, Hatoum OA, Saito T, Sakuma I, Gutterman DD: Mechanism of vasodilation to adenosine in coronary arterioles from patients with heart disease. Am J Physiol Heart Circ Physiol 2005, 288:H1633-1640.
  • [40]Kissling G, Blickle B, Pascht U: Modified heart-lung preparation for the evaluation of systolic and diastolic coronary flow in rats. Am J Physiol Heart Circ Physiol 2000, 278:H277-284.
  • [41]Crystal GJ: Vasomotor effects of isoflurane in the coronary circulation. Anesthesiology 1996, 84:1516-1518.
  • [42]Iltis I, Kober F, Desrois M, Dalmasso C, Lan C, Portha B, Cozzone PJ, Bernard M: Defective myocardial blood flow and altered function of the left ventricle in type 2 diabetic rats: a noninvasive in vivo study using perfusion and cine magnetic resonance imaging. Invest Radiol 2005, 40:19-26.
  • [43]Wicker P, Tarazi RC: Coronary blood flow measurements with left atrial injection of microspheres in conscious rats. Cardiovasc Res 1982, 16:580-586.
  • [44]Debaene B, Goldfarb G, Braillon A, Jolis P, Lebrec D: Effects of ketamine, halothane, enflurane, and isoflurane on systemic and splanchnic hemodynamics in normovolemic and hypovolemic cirrhotic rats. Anesthesiology 1990, 73:118-124.
  • [45]Oshita A, Ohmori K, Yu Y, Kondo I, Takeuchi H, Takagi Y, Wada Y, Yukiiri K, Mizushige K, Kohno M: Myocardial blood flow measurements in rats with simple pulsing contrast echocardiography. Ultrasound Med Biol 2002, 28:459-466.
  • [46]Raher MJ, Thibault H, Poh KK, Liu R, Halpern EF, Derumeaux G, Ichinose F, Zapol WM, Bloch KD, Picard MH, Scherrer-Crosbie M: In vivo characterization of murine myocardial perfusion with myocardial contrast echocardiography: validation and application in nitric oxide synthase 3 deficient mice. Circulation 2007, 116:1250-1257.
  • [47]Croteau E, Benard F, Bentourkia M, Rousseau J, Paquette M, Lecomte R: Quantitative myocardial perfusion and coronary reserve in rats with 13N-ammonia and small animal PET: impact of anesthesia and pharmacologic stress agents. J Nucl Med 2004, 45:1924-1930.
  文献评价指标  
  下载次数:40次 浏览次数:8次