| Journal of Cardiovascular Magnetic Resonance | |
| In vivo characterization of rodent cyclic myocardial perfusion variation at rest and during adenosine-induced stress using cine-ASL cardiovascular magnetic resonance | |
| Frank Kober1  Monique Bernard1  Thibaut Capron1  Thomas Troalen1  | |
| [1] Aix-Marseille Université, CNRS, CRMBM UMR 7339, 27 Bd Jean Moulin, 13385 Marseille Cedex 5, France | |
| 关键词: Rat heart; Perfusion; Adenosine; Microcirculation; Myocardial blood flow; | |
| Others : 801680 DOI : 10.1186/1532-429X-16-18 |
|
| received in 2013-09-06, accepted in 2014-02-10, 发布年份 2014 | |
PDF
|
|
【 摘 要 】
Background
Assessment of cyclic myocardial blood flow (MBF) variations can be an interesting addition to the characterization of microvascular function and its alterations. To date, totally non-invasive in vivo methods with this capability are still lacking. As an original technique, a cine arterial spin labeling (ASL) cardiovascular magnetic resonance approach is demonstrated to be able to produce dynamic MBF maps across the cardiac cycle in rats.
Method
High-resolution MBF maps in left ventricular myocardium were computed from steady-state perfusion-dependent gradient-echo cine images produced by the cine-ASL sequence. Cyclic changes of MBF over the entire cardiac cycle in seven normal rats were analyzed quantitatively every 6ms at rest and during adenosine-induced stress.
Results
The study showed a significant MBF increase from end-systole (ES) to end-diastole (ED) in both physiological states. Mean MBF over the cardiac cycle within the group was 5.5 ± 0.6 mL g-1 min-1 at rest (MBFMin = 4.7 ± 0.8 at ES and MBFMax = 6.5 ± 0.6 mL g-1 min-1 at ED, P = 0.0007). Mean MBF during adenosine-induced stress was 12.8 ± 0.7mL g-1 min-1 (MBFMin = 11.7±1.0 at ES and MBFMax = 14.2 ± 0.7 mL g-1 min-1 at ED, P = 0.0007). MBF percentage relative variations were significantly different with 27.2 ± 9.3% at rest and 17.8 ± 7.1% during adenosine stress (P = 0.014). The dynamic analysis also showed a time shift of peak MBF within the cardiac cycle during stress.
Conclusion
The cyclic change of myocardial perfusion was examined by mapping MBF with a steady-pulsed ASL approach. Dynamic MBF maps were obtained with high spatial and temporal resolution (6ms) demonstrating the feasibility of non-invasively mapping cyclic myocardial perfusion variation at rest and during adenosine stress. In a pathological context, detailed assessment of coronary responses to infused vasodilators may give valuable complementary information on microvascular functional defects in disease models.
【 授权许可】
2014 Troalen et al.; licensee BioMed Central Ltd.
【 预 览 】
| Files | Size | Format | View |
|---|---|---|---|
| 20140708011929330.pdf | 1599KB | ||
| Figure 7. | 41KB | Image | |
| Figure 6. | 58KB | Image | |
| Figure 5. | 80KB | Image | |
| Figure 4. | 47KB | Image | |
| Figure 3. | 84KB | Image | |
| Figure 2. | 122KB | Image | |
| Figure 1. | 78KB | Image |
【 图 表 】
Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
Figure 7.
【 参考文献 】
- [1]Gregg DE, Sabiston DC Jr: Effect of cardiac contraction on coronary blood flow. Circulation 1957, 15:14-20.
- [2]Hoffman JI, Spaan JA: Pressure-flow relations in coronary circulation. Physiol Rev 1990, 70:331-390.
- [3]Morgenstern C, Holjes U, Arnold G, Lochner W: The influence of coronary pressure and coronary flow on intracoronary blood volume and geometry of the left ventricle. Pflugers Arch 1973, 340:101-111.
- [4]Spaan JA, Breuls NP, Laird JD: Diastolic-systolic coronary flow differences are caused by intramyocardial pump action in the anesthetized dog. Circ Res 1981, 49:584-593.
- [5]Klassen GA, Barclay KD, Wong R, Paton B, Wong AY: Red cell flux during the cardiac cycle in the rabbit myocardial microcirculation. Cardiovasc Res 1997, 34:504-514.
- [6]Ashikawa K, Kanatsuka H, Suzuki T, Takishima T: Phasic blood flow velocity pattern in epimyocardial microvessels in the beating canine left ventricle. Circ Res 1986, 59:704-711.
- [7]Kajiya F, Tsujioka K, Ogasawara Y, Hiramatsu O, Wada Y, Goto M, Yanaka M: Analysis of the characteristics of the flow velocity waveforms in left atrial small arteries and veins in the dog. Circ Res 1989, 65:1172-1181.
- [8]Yada T, Hiramatsu O, Kimura A, Goto M, Ogasawara Y, Tsujioka K, Yamamori S, Ohno K, Hosaka H, Kajiya F: In vivo observation of subendocardial microvessels of the beating porcine heart using a needle-probe videomicroscope with a CCD camera. Circ Res 1993, 72:939-946.
- [9]Wu EX, Tang H, Wong KK, Wang J: Mapping cyclic change of regional myocardial blood volume using steady-state susceptibility effect of iron oxide nanoparticles. J Magn Reson Imaging 2004, 19:50-58.
- [10]Rodriguez I, Ennis DB, Wen H: Noninvasive measurement of myocardial tissue volume change during systolic contraction and diastolic relaxation in the canine left ventricle. Magn Reson Med 2006, 55:484-490.
- [11]Radjenovic A, Biglands JD, Larghat A, Ridgway JP, Ball SG, Greenwood JP, Jerosch-Herold M, Plein S: Estimates of systolic and diastolic myocardial blood flow by dynamic contrast-enhanced MRI. Magn Reson Med 2010, 64:1696-1703.
- [12]Coolen BF, Moonen RP, Paulis LE, Geelen T, Nicolay K, Strijkers GJ: Mouse myocardial first-pass perfusion MR imaging. Magn Reson Med 2010, 64:1658-1663.
- [13]Makowski M, Jansen C, Webb I, Chiribiri A, Nagel E, Botnar R, Kozerke S, Plein S: First-pass contrast-enhanced myocardial perfusion MRI in mice on a 3-T clinical MR scanner. Magn Reson Med 2010, 64:1592-1598.
- [14]Jogiya R, Makowski M, Phinikaridou A, Patel AS, Jansen C, Zarinabad N, Chiribiri A, Botnar R, Nagel E, Kozerke S, Plein S: Hyperemic stress myocardial perfusion cardiovascular magnetic resonance in mice at 3 Tesla: initial experience and validation against microspheres. J Cardiovasc Magn Reson 2013, 15(1):62. BioMed Central Full Text
- [15]van Nierop BJ, Coolen BF, Dijk WJ, Hendriks AD, de Graaf L, Nicolay K, Strijkers GJ: Quantitative first-pass perfusion MRI of the mouse myocardium. Magn Reson Med 2013, 69:1735-1744.
- [16]Belle V, Kahler E, Waller C, Rommel E, Voll S, Hiller KH, Bauer WR, Haase A: In vivo quantitative mapping of cardiac perfusion in rats using a noninvasive MR spin-labeling method. J Magn Reson Imaging 1998, 8:1240-1245.
- [17]Waller C, Hiller KH, Voll S, Haase A, Ertl G, Bauer WR: Myocardial perfusion imaging using a non-contrast agent MR imaging technique. Int J Cardiovasc Imaging 2001, 17:123-132.
- [18]Kober F, Iltis I, Izquierdo M, Desrois M, Ibarrola D, Cozzone PJ, Bernard M: High-resolution myocardial perfusion mapping in small animals in vivo by spin-labeling gradient-echo imaging. Magn Reson Med 2004, 51:62-67.
- [19]Kober F, Iltis I, Cozzone PJ, Bernard M: Myocardial blood flow mapping in mice using high-resolution spin labeling magnetic resonance imaging: influence of ketamine/xylazine and isoflurane anesthesia. Magn Reson Med 2005, 53:601-606.
- [20]Streif JU, Nahrendorf M, Hiller KH, Waller C, Wiesmann F, Rommel E, Haase A, Bauer WR: In vivo assessment of absolute perfusion and intracapillary blood volume in the murine myocardium by spin labeling magnetic resonance imaging. Magn Reson Med 2005, 53:584-592.
- [21]Nahrendorf M, Streif JU, Hiller KH, Hu K, Nordbeck P, Ritter O, Sosnovik D, Bauer L, Neubauer S, Jakob PM, Ertl G, Spindler M, Bauer WR: Multimodal functional cardiac MRI in creatine kinase-deficient mice reveals subtle abnormalities in myocardial perfusion and mechanics. Am J Physiol Heart Circ Physiol 2006, 290:H2516-2521.
- [22]Vandsburger MH, Janiczek RL, Xu Y, French BA, Meyer CH, Kramer CM, Epstein FH: Improved arterial spin labeling after myocardial infarction in mice using cardiac and respiratory gated look-locker imaging with fuzzy C-means clustering. Magn Reson Med 2010, 63:648-657.
- [23]Jacquier A, Kober F, Bun S, Giorgi R, Cozzone PJ, Bernard M: Quantification of myocardial blood flow and flow reserve in rats using arterial spin labeling MRI: comparison with a fluorescent microsphere technique. NMR Biomed 2011, 24(9):1047-1053.
- [24]Campbell-Washburn AE, Price AN, Wells JA, Thomas DL, Ordidge RJ, Lythgoe MF: Cardiac arterial spin labeling using segmented ECG-gated Look-Locker FAIR: variability and repeatability in preclinical studies. Magn Reson Med 2013, 69(1):238-247.
- [25]Northrup BE, McCommis KS, Zhang HS, Ray S, Woodard PK, Gropler RJ, Zheng J: Resting myocardial perfusion quantification with CMR arterial spin labeling at 1.5 T and 3.0 T. J Cardiovasc Magn Reson 2008, 10:53. BioMed Central Full Text
- [26]Zun ZH, Varadarajan P, Pai RG, Wong EC, Nayak KS: Arterial spin labeled CMR detects clinically relevant increase in myocardial blood flow with vasodilation. Jacc-Cardiovasc Imag 2011, 4:1253-1261.
- [27]Troalen T, Capron T, Cozzone PJ, Bernard M, Kober F: Cine-ASL: A steady-pulsed arterial spin labeling method for myocardial perfusion mapping in mice. Part I. Experimental study. Magn Reson Med 2013, 70:1389-1398.
- [28]Capron T, Troalen T, Cozzone PJ, Bernard M, Kober F: Cine-ASL: A steady-pulsed arterial spin labeling method for myocardial perfusion mapping in mice. Part II. Theoretical model and sensitivity optimization. Magn Reson Med 2013, 70:1399-1408.
- [29]Troalen T, Capron T, Cozzone PJ, Bernard M, Kober F: Cyclic Variation of Myocardial Blood Flow Assessed with cine-ASL. Abstracts of ESMRMB (European Society for Magnetic Resonance in Medicine and Biology) 2012, the 29th Annual Scientific Meeting. Lisbon, Portugal. October 4–6, 2012. MAGMA 2012, 25(Suppl 1):94.
- [30]Takuma S, Suehiro K, Cardinale C, Hozumi T, Yano H, Shimizu J, Mullis-Jansson S, Sciacca R, Wang J, Burkhoff D, Di Tullio MR, Homma S, et al.: Anesthetic inhibition in ischemic and non ischemic murine heart: comparison with conscious echocardiographic approach. Am J Physiol Heart Circ Physiol 2001, 280:H2364-2370.
- [31]Iltis I, Kober F, Dalmasso C, Lan C, Cozzone PJ, Bernard M: In vivo assessment of myocardial blood flow in rat heart using magnetic resonance imaging: effect of anesthesia. J Magn Reson Imaging 2005, 22:242-247.
- [32]Waller C, Kahler E, Hiller KH, Hu K, Nahrendorf M, Voll S, Haase A, Ertl G, Bauer WR: Myocardial perfusion and intracapillary blood volume in rats at rest and with coronary dilatation: MR imaging in vivo with use of a spin-labeling technique. Radiology 2000, 215:189-197.
- [33]Deichmann R, Haase A: Quantification of T1 Values by Snapshot-Flash Nmr Imaging. J Magn Reson 1992, 96:608-612.
- [34]Davies JE, Whinnett ZI, Francis DP, Manisty CH, Aguado-Sierra J, Willson K, Foale RA, Malik IS, Hughes AD, Parker KH, Mayet J: Evidence of a dominant backward-propagating “suction” wave responsible for diastolic coronary filling in humans, attenuated in left ventricular hypertrophy. Circulation 2006, 113:1768-1778.
- [35]Chilian WM, Eastham CL, Layne SM, Marcus ML: Small vessel phenomena in the coronary microcirculation: phasic intramyocardial perfusion and coronary microvascular dynamics. Prog Cardiovasc Dis 1988, 31:17-38.
- [36]Kajiya M, Hirota M, Inai Y, Kiyooka T, Morimoto T, Iwasaki T, Endo K, Mohri S, Shimizu J, Yada T, Ogasawara Y, Naruse K, Ohe T, Kajiya F: Impaired NO-mediated vasodilation with increased superoxide but robust EDHF function in right ventricular arterial microvessels of pulmonary hypertensive rats. Am J Physiol Heart Circ Physiol 2007, 292:H2737-2744.
- [37]Kajiya F, Yada T, Hiramatsu O, Ogasawara Y, Inai Y, Kajiya M: Coronary microcirculation in the beating heart. Med Biol Eng Comput 2008, 46:411-419.
- [38]Wong EC, Buxton RB, Frank LR: Implementation of quantitative perfusion imaging techniques for functional brain mapping using pulsed arterial spin labeling. NMR Biomed 1997, 10:237-249.
- [39]Sato A, Terata K, Miura H, Toyama K, Loberiza FR Jr, Hatoum OA, Saito T, Sakuma I, Gutterman DD: Mechanism of vasodilation to adenosine in coronary arterioles from patients with heart disease. Am J Physiol Heart Circ Physiol 2005, 288:H1633-1640.
- [40]Kissling G, Blickle B, Pascht U: Modified heart-lung preparation for the evaluation of systolic and diastolic coronary flow in rats. Am J Physiol Heart Circ Physiol 2000, 278:H277-284.
- [41]Crystal GJ: Vasomotor effects of isoflurane in the coronary circulation. Anesthesiology 1996, 84:1516-1518.
- [42]Iltis I, Kober F, Desrois M, Dalmasso C, Lan C, Portha B, Cozzone PJ, Bernard M: Defective myocardial blood flow and altered function of the left ventricle in type 2 diabetic rats: a noninvasive in vivo study using perfusion and cine magnetic resonance imaging. Invest Radiol 2005, 40:19-26.
- [43]Wicker P, Tarazi RC: Coronary blood flow measurements with left atrial injection of microspheres in conscious rats. Cardiovasc Res 1982, 16:580-586.
- [44]Debaene B, Goldfarb G, Braillon A, Jolis P, Lebrec D: Effects of ketamine, halothane, enflurane, and isoflurane on systemic and splanchnic hemodynamics in normovolemic and hypovolemic cirrhotic rats. Anesthesiology 1990, 73:118-124.
- [45]Oshita A, Ohmori K, Yu Y, Kondo I, Takeuchi H, Takagi Y, Wada Y, Yukiiri K, Mizushige K, Kohno M: Myocardial blood flow measurements in rats with simple pulsing contrast echocardiography. Ultrasound Med Biol 2002, 28:459-466.
- [46]Raher MJ, Thibault H, Poh KK, Liu R, Halpern EF, Derumeaux G, Ichinose F, Zapol WM, Bloch KD, Picard MH, Scherrer-Crosbie M: In vivo characterization of murine myocardial perfusion with myocardial contrast echocardiography: validation and application in nitric oxide synthase 3 deficient mice. Circulation 2007, 116:1250-1257.
- [47]Croteau E, Benard F, Bentourkia M, Rousseau J, Paquette M, Lecomte R: Quantitative myocardial perfusion and coronary reserve in rats with 13N-ammonia and small animal PET: impact of anesthesia and pharmacologic stress agents. J Nucl Med 2004, 45:1924-1930.
PDF