期刊论文详细信息
Journal of Translational Medicine
A microRNA profile of human CD8+ regulatory T cells and characterization of the effects of microRNAs on Treg cell-associated genes
Redouane Rouas2  Philippe Martiat2  Bassam Badran1  Arsene Burny2  Pedro Romero4  Oberdan Leo2  Jean-Christophe Verougstraete3  Philippe Lewalle2  Makram Merimi2  Hussein Fayyad-Kazan2  Fadi Jebbawi2 
[1] Department of Biochemistry, Laboratory of Immunology, EDST-PRASE, Faculty of Sciences, Lebanese University, Hadath-Beirut, Lebanon;Experimental Hematology, Institut Jules Bordet, Université Libre de Bruxelles, 121, Boulevard de Waterloo, Bruxelles, 1000, Belgium;Department of Gynecology and Obstetrics, Clinique Saint-Pierre, Ottignies, Belgium;Ludwig Center for Cancer Research of the University of Lausanne, Lausanne, Switzerland
关键词: CD8;    GARP;    CTLA-4;    FOXP3;    microRNA;    Regulatory T cells;   
Others  :  1148585
DOI  :  10.1186/s12967-014-0218-x
 received in 2014-03-09, accepted in 2014-07-21,  发布年份 2014
PDF
【 摘 要 】

Background

Recently, regulatory T (Treg) cells have gained interest in the fields of immunopathology, transplantation and oncoimmunology. Here, we investigated the microRNA expression profile of human natural CD8+CD25+ Treg cells and the impact of microRNAs on molecules associated with immune regulation.

Methods

We purified human natural CD8+ Treg cells and assessed the expression of FOXP3 and CTLA-4 by flow cytometry. We have also tested the ex vivo suppressive capacity of these cells in mixed leukocyte reactions. Using TaqMan low-density arrays and microRNA qPCR for validation, we could identify a microRNA ‘signature’ for CD8+CD25+FOXP3+CTLA-4+ natural Treg cells. We used the ‘TargetScan’ and ‘miRBase’ bioinformatics programs to identify potential target sites for these microRNAs in the 3′-UTR of important Treg cell-associated genes.

Results

The human CD8+CD25+ natural Treg cell microRNA signature includes 10 differentially expressed microRNAs. We demonstrated an impact of this signature on Treg cell biology by showing specific regulation of FOXP3, CTLA-4 and GARP gene expression by microRNA using site-directed mutagenesis and a dual-luciferase reporter assay. Furthermore, we used microRNA transduction experiments to demonstrate that these microRNAs impacted their target genes in human primary Treg cells ex vivo.

Conclusions

We are examining the biological relevance of this ‘signature’ by studying its impact on other important Treg cell-associated genes. These efforts could result in a better understanding of the regulation of Treg cell function and might reveal new targets for immunotherapy in immune disorders and cancer.

【 授权许可】

   
2014 Jebbawi et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150404170843142.pdf 1642KB PDF download
Figure 6. 48KB Image download
Figure 5. 52KB Image download
Figure 4. 59KB Image download
Figure 3. 61KB Image download
Figure 2. 45KB Image download
Figure 1. 39KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

【 参考文献 】
  • [1]Dinesh RK, Skaggs BJ, La Cava A, Hahn BH, Singh RP: CD8+ Tregs in lupus, autoimmunity, and beyond. Autoimmun Rev 2010, 9(8):560-568.
  • [2]Daniele N, Scerpa MC, Landi F, Caniglia M, Miele MJ, Locatelli F, Isacchi G, Zinno F: T(reg) cells: collection, processing, storage and clinical use. Pathol Res Pract 2011, 207(4):209-215.
  • [3]Huseby ES, Liggitt D, Brabb T, Schnabel B, Ohlen C, Goverman J: A pathogenic role for myelin-specific CD8(+) T cells in a model for multiple sclerosis. J Exp Med 2001, 194(5):669-676.
  • [4]Liblau RS, Wong FS, Mars LT, Santamaria P: Autoreactive CD8 T cells in organ-specific autoimmunity: emerging targets for therapeutic intervention. Immunity 2002, 17(1):1-6.
  • [5]Miller A, Lider O, Roberts AB, Sporn MB, Weiner HL: Suppressor T cells generated by oral tolerization to myelin basic protein suppress both in vitro and in vivo immune responses by the release of transforming growth factor beta after antigen-specific triggering. Proc Natl Acad Sci U S A 1992, 89(1):421-425.
  • [6]Zhang GX, Ma CG, Xiao BG, Bakhiet M, Link H, Olsson T: Depletion of CD8+ T cells suppresses the development of experimental autoimmune myasthenia gravis in Lewis rats. Eur J Immunol 1995, 25(5):1191-1198.
  • [7]Martin PJ: Donor CD8 cells prevent allogeneic marrow graft rejection in mice: potential implications for marrow transplantation in humans. J Exp Med 1993, 178(2):703-712.
  • [8]Fowler DH, Breglio J, Nagel G, Eckhaus MA, Gress RE: Allospecific CD8+ Tc1 and Tc2 populations in graft-versus-leukemia effect and graft-versus-host disease. J Immunol 1996, 157(11):4811-4821.
  • [9]Prezzi C, Casciaro MA, Francavilla V, Schiaffella E, Finocchi L, Chircu LV, Bruno G, Sette A, Abrignani S, Barnaba V: Virus-specific CD8(+) T cells with type 1 or type 2 cytokine profile are related to different disease activity in chronic hepatitis C virus infection. Eur J Immunol 2001, 31(3):894-906.
  • [10]Hu D, Weiner HL, Ritz J: Identification of cytolytic Cytolytic CD161−CD56+ Regulatory CD8 T Cells in Human Peripheral Blood. PLoS One 2013, 8:e59545.
  • [11]Xystrakis E, Dejean AS, Bernard I, Druet P, Liblau R, Gonzalez-Dunia D, Saoudi A: Identification of a novel natural regulatory CD8 T-cell subset and analysis of its mechanism of regulation. Blood 2004, 104(10):3294-3301.
  • [12]Uss E, Rowshani AT, Hooibrink B, Lardy NM, van Lier RA, ten Berge IJ: CD103 is a marker for alloantigen-induced regulatory CD8+ T cells. J Immunol 2006, 177(5):2775-2783.
  • [13]Tilburgs T, Roelen DL, van der Mast BJ, van Schip JJ, Kleijburg C, Groot-Swings GM, Kanhai HH, Claas FH, Scherjon SA: Differential distribution of CD4(+)CD25(bright) and CD8(+)CD28(−) T-cells in decidua and maternal blood during human pregnancy. Placenta 2006, 27(Suppl A):S47-S53.
  • [14]Tennakoon DK, Mehta RS, Ortega SB, Bhoj V, Racke MK, Karandikar NJ: Therapeutic induction of regulatory, cytotoxic CD8+ T cells in multiple sclerosis. J Immunol 2006, 176(11):7119-7129.
  • [15]Shao L, Jacobs AR, Johnson VV, Mayer L: Activation of CD8+ regulatory T cells by human placental trophoblasts. J Immunol 2005, 174(12):7539-7547.
  • [16]Popescu I, Macedo C, Abu-Elmagd K, Shapiro R, Hua Y, Thomson AW, Morelli AE, Storkus WJ, Metes D: EBV-specific CD8+ T cell reactivation in transplant patients results in expansion of CD8+ type-1 regulatory T cells. Am J Transplant 2007, 7(5):1215-1223.
  • [17]Joosten SA, van Meijgaarden KE, Savage ND, de Boer T, Triebel F, van der Wal A, de Heer E, Klein MR, Geluk A, Ottenhoff TH: Identification of a human CD8+ regulatory T cell subset that mediates suppression through the chemokine CC chemokine ligand 4. Proc Natl Acad Sci U S A 2007, 104(19):8029-8034.
  • [18]Filaci G, Fenoglio D, Fravega M, Ansaldo G, Borgonovo G, Traverso P, Villaggio B, Ferrera A, Kunkl A, Rizzi M, Ferrera F, Balestra P, Ghio M, Contini P, Setti M, Olive D, Azzarone B, Carmignani G, Ravetti JL, Torre G, Indiveri F: CD8+ CD28- T regulatory lymphocytes inhibiting T cell proliferative and cytotoxic functions infiltrate human cancers. J Immunol 2007, 179(7):4323-4334.
  • [19]Cosmi L, Liotta F, Lazzeri E, Francalanci M, Angeli R, Mazzinghi B, Santarlasci V, Manetti R, Vanini V, Romagnani P, Maggi E, Romagnani S, Annunziato F: Human CD8+CD25+ thymocytes share phenotypic and functional features with CD4+CD25+ regulatory thymocytes. Blood 2003, 102(12):4107-4114.
  • [20]Colovai AI, Mirza M, Vlad G, Wang S, Ho E, Cortesini R, Suciu-Foca N: Regulatory CD8+CD28- T cells in heart transplant recipients. Hum Immunol 2003, 64(1):31-37.
  • [21]Chang CC, Ciubotariu R, Manavalan JS, Yuan J, Colovai AI, Piazza F, Lederman S, Colonna M, Cortesini R, Dalla-Favera R, Suciu-Foca N: Tolerization of dendritic cells by T(S) cells: the crucial role of inhibitory receptors ILT3 and ILT4. Nat Immunol 2002, 3(3):237-243.
  • [22]Cai J, Lee J, Jankowska-Gan E, Derks R, Pool J, Mutis T, Goulmy E, Burlingham WJ: Minor H antigen HA-1-specific regulator and effector CD8+ T cells, and HA-1 microchimerism, in allograft tolerance. J Exp Med 2004, 199(7):1017-1023.
  • [23]Brimnes J, Allez M, Dotan I, Shao L, Nakazawa A, Mayer L: Defects in CD8+ regulatory T cells in the lamina propria of patients with inflammatory bowel disease. J Immunol 2005, 174(9):5814-5822.
  • [24]Bisikirska B, Colgan J, Luban J, Bluestone JA, Herold KC: TCR stimulation with modified anti-CD3 mAb expands CD8+ T cell population and induces CD8+CD25+ Tregs. J Clin Invest 2005, 115(10):2904-2913.
  • [25]Billerbeck E, Blum HE, Thimme R: Parallel expansion of human virus-specific FoxP3- effector memory and de novo-generated FoxP3+ regulatory CD8 T cells upon antigen recognition in vitro. J Immunol 2007, 179(2):1039-1048.
  • [26]Gilliet M, Liu YJ: Generation of human CD8 T regulatory cells by CD40 ligand-activated plasmacytoid dendritic cells. J Exp Med 2002, 195(6):695-704.
  • [27]Shi Z, Okuno Y, Rifa'i M, Endharti AT, Akane K, Isobe K, Suzuki H: Human CD8+CXCR3+ T cells have the same function as murine CD8+CD122+ Treg. Eur J Immunol 2009, 39:2106-2119.
  • [28]Yagi H, Nomura T, Nakamura K, Yamazaki S, Kitawaki T, Hori S, Maeda M, Onodera M, Uchiyama T, Fujii S, Sakaguchi S: Crucial role of FOXP3 in the development and function of human CD25+CD4+ regulatory T cells. Int Immunol 2004, 16(11):1643-1656.
  • [29]Wildin RS, Ramsdell F, Peake J, Faravelli F, Casanova JL, Buist N, Levy-Lahad E, Mazzella M, Goulet O, Perroni L, Bricarelli FD, Byrne G, McEuen M, Proll S, Appleby M, Brunkow ME: X-linked neonatal diabetes mellitus, enteropathy and endocrinopathy syndrome is the human equivalent of mouse scurfy. Nat Genet 2001, 27(1):18-20.
  • [30]Bennett CL, Christie J, Ramsdell F, Brunkow ME, Ferguson PJ, Whitesell L, Kelly TE, Saulsbury FT, Chance PF, Ochs HD: The immune dysregulation, polyendocrinopathy, enteropathy, X-linked syndrome (IPEX) is caused by mutations of FOXP3. Nat Genet 2001, 27(1):20-21.
  • [31]Khattri R, Cox T, Yasayko SA, Ramsdell F: An essential role for Scurfin in CD4+CD25+ T regulatory cells. Nat Immunol 2003, 4(4):337-342.
  • [32]Buckner JH, Ziegler SF: Functional analysis of FOXP3. Ann NY Acad Sci 2008, 1143:151-169.
  • [33]Kolar P, Knieke K, Hegel JK, Quandt D, Burmester GR, Hoff H, Brunner-Weinzierl MC: CTLA-4 (CD152) controls homeostasis and suppressive capacity of regulatory T cells in mice. Arthritis Rheum 2009, 60(1):123-132.
  • [34]Hori S, Nomura T, Sakaguchi S: Control of regulatory T cell development by the transcription factor Foxp3. Science 2003, 299(5609):1057-1061.
  • [35]Fontenot JD, Gavin MA, Rudensky AY: Foxp3 programs the development and function of CD4+CD25+ regulatory T cells. Nat Immunol 2003, 4(4):330-336.
  • [36]Wang R, Kozhaya L, Mercer F, Khaitan A, Fujii H, Unutmaz D: Expression of GARP selectively identifies activated human FOXP3+ regulatory T cells. Proc Natl Acad Sci U S A 2009, 106:13439-13444.
  • [37]Ariyan C, Salvalaggio P, Fecteau S, Deng S, Rogozinski L, Mandelbrot D, Sharpe A, Sayegh MH, Basadonna GP, Rothstein DM: Cutting edge: transplantation tolerance through enhanced CTLA-4 expression. J Immunol 2003, 171(11):5673-5677.
  • [38]Kavvoura FK, Ioannidis JP: CTLA-4 gene polymorphisms and susceptibility to type 1 diabetes mellitus: a HuGE Review and meta-analysis. Am J Epidemiol 2005, 162(1):3-16.
  • [39]Ribas A, Camacho LH, Lopez-Berestein G, Pavlov D, Bulanhagui CA, Millham R, Comin-Anduix B, Reuben JM, Seja E, Parker CA, Sharma A, Glaspy JA, Gomez-Navarro J: Antitumor activity in melanoma and anti-self responses in a phase I trial with the anti-cytotoxic T lymphocyte-associated antigen 4 monoclonal antibody CP-675,206. J Clin Oncol 2005, 23(35):8968-8977.
  • [40]Tran DQ, Andersson J, Wang R, Ramsey H, Unutmaz D, Shevach EM: GARP (LRRC32) is essential for the surface expression of latent TGF-beta on platelets and activated FOXP3+ regulatory T cells. Proc Natl Acad Sci U S A 2009, 106:13445-13450.
  • [41]Stockis J, Colau D, Coulie PG, Lucas S: Membrane protein GARP is a receptor for latent TGF-beta on the surface of activated human Treg. Eur J Immunol 2009, 39:3315-3322.
  • [42]Han J, Lee Y, Yeom KH, Nam JW, Heo I, Rhee JK, Sohn SY, Cho Y, Zhang BT, Kim VN: Molecular basis for the recognition of primary microRNAs by the Drosha-DGCR8 complex. Cell 2006, 125(5):887-901.
  • [43]Lee Y, Ahn C, Han J, Choi H, Kim J, Yim J, Lee J, Provost P, Radmark O, Kim S, Kim VN: The nuclear RNase III Drosha initiates microRNA processing. Nature 2003, 425(6956):415-419.
  • [44]Lee Y, Han J, Yeom KH, Jin H, Kim VN: Drosha in primary microRNA processing. Cold Spring Harb Symp Quant Biol 2006, 71:51-57.
  • [45]Yeom KH, Lee Y, Han J, Suh MR, Kim VN: Characterization of DGCR8/Pasha, the essential cofactor for Drosha in primary miRNA processing. Nucleic Acids Res 2006, 34(16):4622-4629.
  • [46]Bohnsack MT, Czaplinski K, Gorlich D: Exportin 5 is a RanGTP-dependent dsRNA-binding protein that mediates nuclear export of pre-miRNAs. RNA 2004, 10(2):185-191.
  • [47]Chendrimada TP, Gregory RI, Kumaraswamy E, Norman J, Cooch N, Nishikura K, Shiekhattar R: TRBP recruits the Dicer complex to Ago2 for microRNA processing and gene silencing. Nature 2005, 436(7051):740-744.
  • [48]Lund E, Guttinger S, Calado A, Dahlberg JE, Kutay U: Nuclear export of microRNA precursors. Science 2004, 303(5654):95-98.
  • [49]Liu J, Carmell MA, Rivas FV, Marsden CG, Thomson JM, Song JJ, Hammond SM, Joshua-Tor L, Hannon GJ: Argonaute2 is the catalytic engine of mammalian RNAi. Science 2004, 305(5689):1437-1441.
  • [50]Lingel A, Simon B, Izaurralde E, Sattler M: Structure and nucleic-acid binding of the Drosophila Argonaute 2 PAZ domain. Nature 2003, 426(6965):465-469.
  • [51]Stefani G, Slack FJ: Small non-coding RNAs in animal development. Nat Rev Mol Cell Biol 2008, 9(3):219-230.
  • [52]Williams AE: Functional aspects of animal microRNAs. Cell Mol Life Sci 2008, 65(4):545-562.
  • [53]Tili E, Michaille JJ, Gandhi V, Plunkett W, Sampath D, Calin GA: miRNAs and their potential for use against cancer and other diseases. Future Oncol 2007, 3(5):521-537.
  • [54]Lu LF, Thai TH, Calado DP, Chaudhry A, Kubo M, Tanaka K, Loeb GB, Lee H, Yoshimura A, Rajewsky K, Rudensky AY: Foxp3-dependent microRNA155 confers competitive fitness to regulatory T cells by targeting SOCS1 protein. Immunity 2009, 30:80-91.
  • [55]Zhou Q, Haupt S, Prots I, Thummler K, Kremmer E, Lipsky PE, Schulze-Koops H, Skapenko A: miR-142-3p is involved in CD25+ CD4 T cell proliferation by targeting the expression of glycoprotein A repetitions predominant. J Immunol 2013, 190:6579-6588.
  • [56]Huang B, Zhao J, Lei Z, Shen S, Li D, Shen GX, Zhang GM, Feng ZH: miR-142-3p restricts cAMP production in CD4+ CD25- T cells and CD4+CD25+ TREG cells by targeting AC9 mRNA. EMBO Rep 2009, 10:180-185.
  • [57]de Kouchkovsky D, Esensten JH, Rosenthal WL, Morar MM, Bluestone JA, Jeker LT: microRNA-17-92 regulates IL-10 production by Tregs and control of experimental autoimmune encephalomyelitis. J Immunol 2013, 191:1594-1605.
  • [58]Ha TY: The Role of MicroRNAs in Regulatory T Cells and in the Immune Response. Immun Netw 2011, 11(1):11-41.
  • [59]Bresatz S, Sadlon T, Millard D, Zola H, Barry SC: Isolation, propagation and characterization of cord blood derived CD4+ CD25+ regulatory T cells. J Immunol Methods 2007, 327(1–2):53-62.
  • [60]Naldini L, Blomer U, Gallay P, Ory D, Mulligan R, Gage FH, Verma IM, Trono D: In vivo gene delivery and stable transduction of nondividing cells by a lentiviral vector. Science 1996, 272:263-267.
  • [61]Zufferey R, Nagy D, Mandel RJ, Naldini L, Trono D: Multiply attenuated lentiviral vector achieves efficient gene delivery in vivo. Nat Biotechnol 1997, 15:871-875.
  • [62]Yeung ML, Bennasser Y, Le SY, Jeang KT: siRNA, miRNA and HIV: promises and challenges. Cell Res 2005, 15:935-946.
  • [63]Johnston JC, Gasmi M, Lim LE, Elder JH, Yee JK, Jolly DJ, Campbell KP, Davidson BL, Sauter SL: Minimum requirements for efficient transduction of dividing and nondividing cells by feline immunodeficiency virus vectors. J Virol 1999, 73:4991-5000.
  • [64]Abbas-Terki T, Blanco-Bose W, Deglon N, Pralong W, Aebischer P: Lentiviral-mediated RNA interference. Hum Gene Ther 2002, 13:2197-2201.
  • [65]Cobb BS, Hertweck A, Smith J, O'Connor E, Graf D, Cook T, Smale ST, Sakaguchi S, Livesey FJ, Fisher AG, Merkenschlager M: A role for Dicer in immune regulation. J Exp Med 2006, 203:2519-2527.
  • [66]Krek A, Grun D, Poy MN, Wolf R, Rosenberg L, Epstein EJ, MacMenamin P, da Piedade II, Gunsalus KC, Stoffel M, Rajewsky N: Combinatorial microRNA target predictions. Nat Genet 2005, 37(5):495-500.
  • [67]Grimson A, Farh KK, Johnston WK, Garrett-Engele P, Lim LP, Bartel DP: MicroRNA targeting specificity in mammals: determinants beyond seed pairing. Mol Cell 2007, 27(1):91-105.
  • [68]Rouas R, Fayyad-Kazan H, El Zein N, Lewalle P, Rothe F, Simion A, Akl H, Mourtada M, El Rifai M, Burny A, Romero P, Martiat P, Badran B: Human natural Treg microRNA signature: role of microRNA-31 and microRNA-21 in FOXP3 expression. Eur J Immunol 2009, 39(6):1608-1618.
  • [69]Fayyad-Kazan H, Rouas R, Fayyad-Kazan M, Badran R, El Zein N, Lewalle P, Najar M, Hamade E, Jebbawi F, Merimi M, Romero P, Burny A, Badran B, Martiat P: MicroRNA profile of circulating CD4+ regulatory T cells in human adults and impact of differentially expressed microRNAs on expression of two genes essential to their function. J Biol Chem 2012, 287(13):9910-9922.
  • [70]Pandiyan P, Gartner D, Soezeri O, Radbruch A, Schulze-Osthoff K, Brunner-Weinzierl MC: CD152 (CTLA-4) determines the unequal resistance of Th1 and Th2 cells against activation-induced cell death by a mechanism requiring PI3 kinase function. J Exp Med 2004, 199(6):831-842.
  • [71]Gauthy E, Cuende J, Stockis J, Huygens C, Lethe B, Collet JF, Bommer G, Coulie PG, Lucas S: GARP Is Regulated by miRNAs and Controls Latent TGF-beta1 Production by Human Regulatory T Cells. PLoS One 2013, 8:e76186.
  • [72]Dudda JC, Salaun B, Ji Y, Palmer DC, Monnot GC, Merck E, Boudousquie C, Utzschneider DT, Escobar TM, Perret R, Muljo SA, Hebeisen M, Rufer N, Zehn D, Donda A, Restifo NP, Held W, Gattinoni L, Romero P: MicroRNA-155 is required for effector CD8+ T cell responses to virus infection and cancer. Immunity 2013, 38:742-753.
  文献评价指标  
  下载次数:0次 浏览次数:6次