期刊论文详细信息
Journal of Translational Medicine
Epigenetic silencing of the 3p22 tumor suppressor DLEC1 by promoter CpG methylation in non-Hodgkin and Hodgkin lymphomas
Qian Tao5  Richard Ambinder5  Paul G Murray3  Gopesh Srivastava1  Zifen Gao4  Xianwei Su2  Lili Li2  Zhaohui Wang2 
[1] Department of Pathology, University of Hong Kong, Shatin, Hong Kong;Cancer Epigenetics Laboratory, Department of Clinical Oncology, State Key Laboratory of Oncology in South China, Sir YK Pao Center for Cancer, The Chinese University of Hong Kong and CUHK Shenzhen Research Institute, Shatin, Hong Kong;Cancer Research UK Institute for Cancer Studies, University of Birmingham, Birmingham, UK;Department of Pathology, Peking University Health Science Center, Beijing, China;Johns Hopkins Singapore and Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins School of Medicine, Baltimore, MD, USA
关键词: Lymphoma;    Tumor suppressor;    Methylation;    CpG;    DLEC1;   
Others  :  829219
DOI  :  10.1186/1479-5876-10-209
 received in 2012-07-22, accepted in 2012-10-04,  发布年份 2012
PDF
【 摘 要 】

Background

Inactivaion of tumor suppressor genes (TSGs) by promoter CpG methylation frequently occurs in tumorigenesis, even in the early stages, contributing to the initiation and progression of human cancers. Deleted in lung and esophageal cancer 1 (DLEC1), located at the 3p22-21.3 TSG cluster, has been identified frequently silenced by promoter CpG methylation in multiple carcinomas, however, no study has been performed for lymphomas yet.

Methods

We examined the expression of DLEC1 by semi-quantitative reverse transcription (RT)-PCR, and evaluated the promoter methylation of DLEC1 by methylation-specific PCR (MSP) and bisulfite genomic sequencing (BGS) in common lymphoma cell lines and tumors.

Results

Here we report that DLEC1 is readily expressed in normal lymphoid tissues including lymph nodes and PBMCs, but reduced or silenced in 70% (16/23) of non-Hodgkin and Hodgkin lymphoma cell lines, including 2/6 diffuse large B-cell (DLBCL), 1/2 peripheral T cell lymphomas, 5/5 Burkitt, 6/7 Hodgkin and 2/3 nasal killer (NK)/T-cell lymphoma cell lines. Promoter CpG methylation was frequently detected in 80% (20/25) of lymphoma cell lines and correlated with DLEC1 downregulation/silencing. Pharmacologic demethylation reversed DLEC1 expression in lymphoma cell lines along with concomitant promoter demethylation. DLEC1 methylation was also frequently detected in 32 out of 58 (55%) different types of lymphoma tissues, but not in normal lymph nodes. Furthermore, DLEC1 was specifically methylated in the sera of 3/13 (23%) Hodgkin lymphoma patients.

Conclusions

Thus, methylation-mediated silencing of DLEC1 plays an important role in multiple lymphomagenesis, and may serve as a non-invasive tumor marker for lymphoma diagnosis.

【 授权许可】

   
2012 Wang et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20140714060531837.pdf 1401KB PDF download
Figure 4. 51KB Image download
Figure 3. 62KB Image download
Figure 2. 115KB Image download
Figure 1. 40KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

【 参考文献 】
  • [1]Jones PA, Baylin SB: The epigenomics of cancer. Cell 2007, 128:683-692.
  • [2]Baylin SB, Ohm JE: Epigenetic gene silencing in cancer - a mechanism for early oncogenic pathway addiction? Nat Rev Cancer 2006, 6:107-116.
  • [3]Hesson LB, Cooper WN, Latif F: Evaluation of the 3p21.3 tumour-suppressor gene cluster. Oncogene 2007, 26:7283-7301.
  • [4]Cheng Y, Poulos NE, Lung ML, Hampton G, Ou B, Lerman MI, Stanbridge EJ: Functional evidence for a nasopharyngeal carcinoma tumor suppressor gene that maps at chromosome 3p21.3. Proc Natl Acad Sci USA 1998, 95:3042-3047.
  • [5]Maestro R, Gasparotto D, Vukosavljevic T, Barzan L, Sulfaro S, Boiocchi M: Three discrete regions of deletion at 3p in head and neck cancers. Cancer Res 1993, 53:5775-5779.
  • [6]Hibi K, Takahashi T, Yamakawa K, Ueda R, Sekido Y, Ariyoshi Y, Suyama M, Takagi H, Nakamura Y: Three distinct regions involved in 3p deletion in human lung cancer. Oncogene 1992, 7:445-449.
  • [7]Pizzi S, Azzoni C, Bassi D, Bottarelli L, Milione M, Bordi C: Genetic alterations in poorly differentiated endocrine carcinomas of the gastrointestinal tract. Cancer 2003, 98:1273-1282.
  • [8]Yang Q, Yoshimura G, Mori I, Sakurai T, Kakudo K: Chromosome 3p and breast cancer. J Hum Genet 2002, 47:453-459.
  • [9]Acevedo CM, Henriquez M, Emmert-Buck MR, Chuaqui RF: Loss of heterozygosity on chromosome arms 3p and 6q in microdissected adenocarcinomas of the uterine cervix and adenocarcinoma in situ. Cancer 2002, 94:793-802.
  • [10]van den Berg A, Buys CH: Involvement of multiple loci on chromosome 3 in renal cell cancer development. Genes Chromosomes Cancer 1997, 19:59-76.
  • [11]Kimm LR, DeLeeuw RJ, Savage KJ, Rosenwald A, Campo E, Delabie J, Ott G, Muller-Hermelink H-K, Jaffe ES, Rimsza LM, et al.: Frequent occurrence of deletions in primary mediastinal B-cell lymphoma. Genes Chromosomes Cancer 2007, 46:1090-1097.
  • [12]Agathanggelou A, Cooper WN, Latif F: Role of the Ras-association domain family 1 tumor suppressor gene in human cancers. Cancer Res 2005, 65:3497-3508.
  • [13]Dammann R, Schagdarsurengin U, Seidel C, Strunnikova M, Rastetter M, Baier K, Pfeifer GP: The tumor suppressor RASSF1A in human carcinogenesis: an update. Histol Histopathol 2005, 20:645-663.
  • [14]Agathanggelou A, Dallol A, Zochbauer-Muller S, Morrissey C, Honorio S, Hesson L, Martinsson T, Fong KM, Kuo MJ, Yuen PW, et al.: Epigenetic inactivation of the candidate 3p21.3 suppressor gene BLU in human cancers. Oncogene 2003, 22:1580-1588.
  • [15]Qiu GH, Tan LK, Loh KS, Lim CY, Srivastava G, Tsai ST, Tsao SW, Tao Q: The candidate tumor suppressor gene BLU, located at the commonly deleted region 3p21.3, is an E2F-regulated, stress-responsive gene and inactivated by both epigenetic and genetic mechanisms in nasopharyngeal carcinoma. Oncogene 2004, 23:4793-4806.
  • [16]Lerman MI, Minna JD: identification and evaluation of the resident candidate tumor suppressor genes. the international lung cancer chromosome 3p21.3 tumor suppressor gene consortium. Cancer Res 2000, 60:6116-6133.
  • [17]Ji L, Nishizaki M, Gao B, Burbee D, Kondo M, Kamibayashi C, Xu K, Yen N, Atkinson EN, Fang B, et al.: Expression of several genes in the human chromosome 3p21.3 homozygous deletion region by an adenovirus vector results in tumor suppressor activities in vitro and in vivo. Cancer Res 2002, 62:2715-2720.
  • [18]Ji L, Minna JD, Roth JA: 3p21.3 tumor suppressor cluster: prospects for translational applications. Future Oncol 2005, 1:79-92.
  • [19]Hesson L, Bieche I, Krex D, Criniere E, Hoang-Xuan K, Maher ER, Latif F: Frequent epigenetic inactivation of RASSF1A and BLU genes located within the critical 3p21.3 region in gliomas. Oncogene 2004, 23:2408-2419.
  • [20]Wang Y, Yu Z, Wang T, Zhang J, Hong L, Chen L: Identification of epigenetic aberrant promoter methylation of RASSF1A in serum DNA and its clinicopathological significance in lung cancer. Lung Cancer 2007, 56:289-294.
  • [21]Lai HC, Lin YW, Chang CC, Wang HC, Chu TW, Yu MH, Chu TY: Hypermethylation of two consecutive tumor suppressor genes, BLU and RASSF1A, located at 3p21.3 in cervical neoplasias. Gynecol Oncol 2007, 104:629-635.
  • [22]Pan ZG, Kashuba VI, Liu XQ, Shao JY, Zhang RH, Jiang JH, Guo C, Zabarovsky E, Ernberg I, Zeng YX: High frequency somatic mutations in RASSF1A in nasopharyngeal carcinoma. Cancer Biol Ther 2005, 4:1116-1122.
  • [23]Pizzi S, Azzoni C, Bottarelli L, Campanini N, D’Adda T, Pasquali C, Rossi G, Rindi G, Bordi C: RASSF1A promoter methylation and 3p21.3 loss of heterozygosity are features of foregut, but not midgut and hindgut, malignant endocrine tumours. J Pathol 2005, 206:409-416.
  • [24]Tomizawa Y, Iijima H, Nomoto T, Iwasaki Y, Otani Y, Tsuchiya S, Saito R, Dobashi K, Nakajima T, Mori M: Clinicopathological significance of aberrant methylation of RARbeta2 at 3p24, RASSF1A at 3p21.3, and FHIT at 3p14.2 in patients with non-small cell lung cancer. Lung Cancer 2004, 46:305-312.
  • [25]Chow LS, Lo KW, Kwong J, To KF, Tsang KS, Lam CW, Dammann R, Huang DP: RASSF1A is a target tumor suppressor from 3p21.3 in nasopharyngeal carcinoma. Int J Cancer 2004, 109:839-847.
  • [26]Horiguchi K, Tomizawa Y, Tosaka M, Ishiuchi S, Kurihara H, Mori M, Saito N: Epigenetic inactivation of RASSF1A candidate tumor suppressor gene at 3p21.3 in brain tumors. Oncogene 2003, 22:7862-7865.
  • [27]Cohen Y, Singer G, Lavie O, Dong SM, Beller U, Sidransky D: The RASSF1A tumor suppressor gene is commonly inactivated in adenocarcinoma of the uterine cervix. Clin Cancer Res 2003, 9:2981-2984.
  • [28]Wagner KJ, Cooper WN, Grundy RG, Caldwell G, Jones C, Wadey RB, Morton D, Schofield PN, Reik W, Latif F, Maher ER: Frequent RASSF1A tumour suppressor gene promoter methylation in Wilms’ tumour and colorectal cancer. Oncogene 2002, 21:7277-7282.
  • [29]Liu L, Yoon JH, Dammann R, Pfeifer GP: Frequent hypermethylation of the RASSF1A gene in prostate cancer. Oncogene 2002, 21:6835-6840.
  • [30]Hogg RP, Honorio S, Martinez A, Agathanggelou A, Dallol A, Fullwood P, Weichselbaum R, Kuo MJ, Maher ER, Latif F: Frequent 3p allele loss and epigenetic inactivation of the RASSF1A tumour suppressor gene from region 3p21.3 in head and neck squamous cell carcinoma. Eur J Cancer 2002, 38:1585-1592.
  • [31]Dreijerink K, Braga E, Kuzmin I, Geil L, Duh FM, Angeloni D, Zbar B, Lerman MI, Stanbridge EJ, Minna JD, et al.: The candidate tumor suppressor gene, RASSF1A, from human chromosome 3p21.3 is involved in kidney tumorigenesis. Proc Natl Acad Sci USA 2001, 98:7504-7509.
  • [32]Lo KW, Kwong J, Hui AB, Chan SY, To KF, Chan AS, Chow LS, Teo PM, Johnson PJ, Huang DP: High frequency of promoter hypermethylation of RASSF1A in nasopharyngeal carcinoma. Cancer Res 2001, 61:3877-3881.
  • [33]Burbee DG, Forgacs E, Zochbauer-Muller S, Shivakumar L, Fong K, Gao B, Randle D, Kondo M, Virmani A, Bader S, et al.: Epigenetic inactivation of RASSF1A in lung and breast cancers and malignant phenotype suppression. J Natl Cancer Inst 2001, 93:691-699.
  • [34]Chow LS, Lam CW, Chan SY, Tsao SW, To KF, Tong SF, Hung WK, Dammann R, Huang DP, Lo KW: Identification of RASSF1A modulated genes in nasopharyngeal carcinoma. Oncogene 2006, 25:310-316.
  • [35]Daigo Y, Nishiwaki T, Kawasoe T, Tamari M, Tsuchiya E, Nakamura Y: Molecular cloning of a candidate tumor suppressor gene, DLC1, from chromosome 3p21.3. Cancer Res 1999, 59:1966-1972.
  • [36]Kwong J, Chow LS, Wong AY, Hung WK, Chung GT, To KF, Chan FL, Daigo Y, Nakamura Y, Huang DP, Lo KW: Epigenetic inactivation of the deleted in lung and esophageal cancer 1 gene in nasopharyngeal carcinoma. Genes Chromosomes Cancer 2007, 46:171-180.
  • [37]Ayadi W, Karray-Hakim H, Khabir A, Feki L, Charfi S, Boudawara T, Ghorbel A, Daoud J, Frikha M, Busson P, Hammami A: Aberrant methylation of p16, DLEC1, BLU and E-cadherin gene promoters in nasopharyngeal carcinoma biopsies from Tunisian patients. Anticancer Res 2008, 28:2161-2167.
  • [38]Kwong J, Lee JY, Wong KK, Zhou X, Wong DT, Lo KW, Welch WR, Berkowitz RS, Mok SC: Candidate tumor-suppressor gene DLEC1 is frequently downregulated by promoter hypermethylation and histone hypoacetylation in human epithelial ovarian cancer. Neoplasia 2006, 8:268-278.
  • [39]Seng TJ, Currey N, Cooper WA, Lee CS, Chan C, Horvath L, Sutherland RL, Kennedy C, McCaughan B, Kohonen-Corish MR: DLEC1 and MLH1 promoter methylation are associated with poor prognosis in non-small cell lung carcinoma. Br J Cancer 2008, 99:375-382.
  • [40]Qiu GH, Salto-Tellez M, Ross JA, Yeo W, Cui Y, Wheelhouse N, Chen GG, Harrison D, Lai P, Tao Q, Hooi SC: The tumor suppressor gene DLEC1 is frequently silenced by DNA methylation in hepatocellular carcinoma and induces G1 arrest in cell cycle. J Hepatol 2008, 48:433-441.
  • [41]Ying J, Poon FF, Yu J, Geng H, Wong AH, Qiu GH, Goh HK, Rha SY, Tian L, Chan AT, et al.: DLEC1 is a functional 3p22.3 tumour suppressor silenced by promoter CpG methylation in colon and gastric cancers. Br J Cancer 2009, 100:663-669.
  • [42]Zhang Q, Ying J, Li J, Fan Y, Poon FF, Ng KM, Tao Q, Jin J: Aberrant promoter methylation of DLEC1, a critical 3p22 tumor suppressor for renal cell carcinoma, is associated with more advanced tumor stage. J Urol 2010, 184:731-737.
  • [43]Park SY, Kwon HJ, Lee HE, Ryu HS, Kim SW, Kim JH, Kim IA, Jung N, Cho NY, Kang GH: Promoter CpG island hypermethylation during breast cancer progression. Virchows Arch 2010, 458:73-84.
  • [44]Kang GH, Lee S, Cho NY, Gandamihardja T, Long TI, Weisenberger DJ, Campan M, Laird PW: DNA methylation profiles of gastric carcinoma characterized by quantitative DNA methylation analysis. Lab Invest 2008, 88:161-170.
  • [45]Zhang Y, Wang R, Song H, Huang G, Yi J, Zheng Y, Wang J, Chen L: Methylation of multiple genes as a candidate biomarker in non-small cell lung cancer. Cancer Lett 2011, 303:21-28.
  • [46]Ying J, Li H, Murray P, Gao Z, Chen YW, Wang Y, Lee KY, Chan AT, Ambinder RF, Srivastava G, Tao Q: Tumor-specific methylation of the 8p22 tumor suppressor gene DLC1 is an epigenetic biomarker for Hodgkin, nasal NK/T-cell and other types of lymphomas. Epigenetics 2007, 2:15-21.
  • [47]Murray PG, Fan Y, Davies G, Ying J, Geng H, Ng KM, Li H, Gao Z, Wei W, Bose S, et al.: Epigenetic silencing of a proapoptotic cell adhesion molecule, the immunoglobulin superfamily member IGSF4, by promoter CpG methylation protects Hodgkin lymphoma cells from apoptosis. Am J Pathol 2010, 177:1480-1490.
  • [48]Ying J, Li H, Chen YW, Srivastava G, Gao Z, Tao Q: WNT5A is epigenetically silenced in hematologic malignancies and inhibits leukemia cell growth as a tumor suppressor. Blood 2007, 110:4130-4132.
  • [49]Ying J, Li H, Seng TJ, Langford C, Srivastava G, Tsao SW, Putti T, Murray P, Chan AT, Tao Q: Functional epigenetics identifies a protocadherin PCDH10 as a candidate tumor suppressor for nasopharyngeal, esophageal and multiple other carcinomas with frequent methylation. Oncogene 2006, 25:1070-1080.
  • [50]Murray PG, Qiu GH, Fu L, Waites ER, Srivastava G, Heys D, Agathanggelou A, Latif F, Grundy RG, Mann JR, et al.: Frequent epigenetic inactivation of the RASSF1A tumor suppressor gene in Hodgkin’s lymphoma. Oncogene 2004, 23:1326-1331.
  • [51]Cheng Y, Geng H, Cheng SH, Liang P, Bai Y, Li J, Srivastava G, Ng MH, Fukagawa T, Wu X, et al.: KRAB zinc finger protein ZNF382 is a proapoptotic tumor suppressor that represses multiple oncogenes and is commonly silenced in multiple carcinomas. Cancer Res 2010, 70:6516-6526.
  • [52]Jin H, Wang X, Ying J, Wong AH, Cui Y, Srivastava G, Shen ZY, Li EM, Zhang Q, Jin J, et al.: Epigenetic silencing of a Ca(2+)-regulated Ras GTPase-activating protein RASAL defines a new mechanism of Ras activation in human cancers. Proc Natl Acad Sci USA 2007, 104:12353-12358.
  • [53]Tao Q, Robertson KD, Manns A, Hildesheim A, Ambinder RF: The Epstein-Barr virus major latent promoter Qp is constitutively active, hypomethylated, and methylation sensitive. J Virol 1998, 72:7075-7083.
  • [54]Tao Q, Swinnen LJ, Yang J, Srivastava G, Robertson KD, Ambinder RF: Methylation status of the Epstein-Barr virus major latent promoter C in iatrogenic B cell lymphoproliferative disease. Application of PCR-based analysis. Am J Pathol 1999, 155:619-625.
  • [55]Toujani S, Dessen P, Ithzar N, Danglot G, Richon C, Vassetzky Y, Robert T, Lazar V, Bosq J, Da Costa L, et al.: High resolution genome-wide analysis of chromosomal alterations in Burkitt’s lymphoma. PLoS One 2009, 4:e7089.
  文献评价指标  
  下载次数:12次 浏览次数:12次