Journal of Therapeutic Ultrasound | |
Quantitative assessment of damage during MCET: a parametric study in a rodent model | |
Oliver D. Kripfgans1  Xiaofang Lu2  Chunyan Dou1  Douglas L. Miller1  Yiying I. Zhu1  | |
[1] Department of Radiology, University of Michigan Health System, Ann Arbor 48109, MI, USA;Department of Biomedical Engineering, University of Michigan, Ann Arbor 48109, MI, USA | |
关键词: Quantitative therapy analysis; Therapeutic ultrasound; Myocardial macrolesion; Hypertrophic cardiomyopathy; Cavitation microlesions; | |
Others : 1228855 DOI : 10.1186/s40349-015-0039-2 |
|
received in 2015-03-12, accepted in 2015-10-07, 发布年份 2015 | |
【 摘 要 】
Background
Myocardial cavitation-enabled therapy (MCET) has been proposed as a means to achieve minimally invasive myocardial reduction using ultrasound to produce scattered microlesions by cavitating contrast agent microbubbles.
Methods
Rats were treated using burst mode focused ultrasound at 1.5 MHz center frequency and varying envelope and pressure amplitudes. Evans blue staining indicated lethal cardiomyocytic injury. A previously developed quantitative scheme, evaluating the histologic treatment results, provides an insightful analysis for MCET treatment parameters. Such include ultrasound exposure amplitude and pulse modulation, contrast agent dose, and infusion rate.
Results
The quantitative method overcomes the limitation of visual scoring and works for a large dynamic range of treatment impact. Macrolesions are generated as an accumulation of probability driven microlesion formations. Macrolesions grow radially with radii from 0.1 to 1.6 mm as the ultrasound exposure amplitude (peak negative) increases from 2 to 4 MPa. To shorten treatment time, a swept beam was investigated and found to generate an acceptable macrolesion volume of about 40 μL for a single beam position.
Conclusions
Ultrasound parameters and administration of microbubbles directly influence lesion characteristics such as microlesion density and macrolesion dimension. For lesion generation planning, control of MCET is crucial, especially when targeting larger pre-clinical models.
【 授权许可】
2015 Zhu et al.
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
20151019091500700.pdf | 2583KB | download | |
Fig. 13. | 63KB | Image | download |
Fig. 12. | 56KB | Image | download |
20140709054652137.pdf | 274KB | download | |
Fig. 10. | 29KB | Image | download |
Fig. 9. | 28KB | Image | download |
Fig. 8. | 28KB | Image | download |
Fig. 7. | 32KB | Image | download |
Fig. 6. | 29KB | Image | download |
Fig. 5. | 36KB | Image | download |
Fig. 4. | 20KB | Image | download |
Fig. 3. | 48KB | Image | download |
Fig. 2. | 48KB | Image | download |
Fig. 1. | 29KB | Image | download |
【 图 表 】
Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 12.
Fig. 13.
【 参考文献 】
- [1]Gersh BJ, Maron BJ, Bonow RO, Dearani JA, Fifer MA, Link MS et al.. 2011 ACCF/AHA guideline for the diagnosis and treatment of hypertrophic cardiomyopathy: executive summary: a report of the American college of cardiology foundation/American heart association task force on practice guidelines. J Am Coll Cardiol. 2011; 58(25):2703-38.
- [2]Maron BJ, Maron MS. Hypertrophic cardiomyopathy. Lancet. 2013; 381(9862):242-55.
- [3]Marian AJ. Contemporary treatment of hypertrophic cardiomyopathy. Tex Heart Inst J. 2009; 36(3):194-204.
- [4]Miller DL, Dou C, Owens GE, Kripfgans OD. Optimization of ultrasound parameters of myocardial cavitation microlesions for therapeutic application. Ultrasound Med Biol. 2014; 40(6):1228-36.
- [5]Miller DL, Dou CY, Lucchesi BR. Are Ecg premature complexes induced by ultrasonic cavitation electrophysiological responses to irreversible cardiomyocyte injury? Ultrasound Med Biol. 2011; 37(2):312-20.
- [6]Zhou C, Chan HP, Chughtai A, Patel S, Hadjiiski LM, Wei J et al.. Automated coronary artery tree extraction in coronary CT angiography using a multiscale enhancement and dynamic balloon tracking (MSCAR-DBT) method. Comput Med Imaging Graph. 2012; 36(1):1-10.
- [7]Bouraoui B, Ronse C, Baruthio J, Passat N, Germain P. 3D segmentation of coronary arteries based on advanced mathematical morphology techniques. Comput Med Imaging Graph. 2010; 34(5):377-87.
- [8]Xu Y, Liang GY, Hu GS, Yang Y, Geng JZ, Saha PK. Quantification of coronary arterial stenoses in CTA using fuzzy distance transform. Comput Med Imaging Graph. 2012; 36(1):11-24.
- [9]Zhou C, Hadjiiski LM, Sahiner B, Chan HP, Patel S, Cascade PN et al.. Computerized detection of pulmonary embolism in 3D computed tomographic (CT) images: vessel tracking and segmentation techniques. P Soc Photo Opt Ins. 2003; 5032:1613-20.
- [10]Bouma H, Sonnemans JJ, Vilanova A, Gerritsen FA. Automatic detection of pulmonary embolism in CTA images. IEEE Trans Med Imaging. 2009; 28(8):1223-30.
- [11]Moayyeri A, Adams JE, Adler RA, Krieg MA, Hans D, Compston J et al.. Quantitative ultrasound of the heel and fracture risk assessment: an updated meta-analysis. Osteoporosis Int. 2012; 23(1):143-53.
- [12]Pinter SZ, Rubin JM, Kripfgans OD, Treadwell MC, Romero VC, Richards MS et al.. Three-dimensional sonographic measurement of blood volume flow in the umbilical cord. J Ultrasound Med. 2012; 31(12):1927-34.
- [13]Mamou J, Coron A, Hata M, Machi J, Yanagihara E, Laugier P et al.. Three-dimensional high-frequency characterization of cancerous lymph nodes. Ultrasound Med Biol. 2010; 36(3):361-75.
- [14]Zhu YI, Miller DL, Dou C, Kripfgans OD. Characterization of macrolesions induced by myocardial cavitation-enabled therapy. IEEE Trans Biomed Eng. 2015; 62(2):717-27.
- [15]Miller DL, Dou Y, Lu F, Zhu YI, Fabiilli ML, Owens GE et al.. Use of theranostic strategies in myocardial cavitation-enabled therapy. Ultrasound Med Biol. 2015; 41(7):1865-75.
- [16]Miller DL, Dou CY, Wiggins RC. Simulation of diagnostic ultrasound image pulse sequences in cavitation bioeffects research. J Acoust Soc Am. 2007; 122(4):2002-8.
- [17]Jensen JA, Svendsen NB. Calculation of pressure fields from arbitrarily shaped, apodized, and excited ultrasound transducers. IEEE Trans Ultrason Ferroelectr Freq Control. 1992; 39(2):262-7.
- [18]Samuel S, Cooper MA, Bull JL, Fowlkes JB, Miller DL. An ex vivo study of the correlation between acoustic emission and microvascular damage. Ultrasound Med Biol. 2009; 35(9):1574-86.
- [19]ten Cate FJ, Soliman OI, Michels M, Theuns DA, de Jong PL, Geleijnse ML et al.. Long-term outcome of alcohol septal ablation in patients with obstructive hypertrophic cardiomyopathy: a word of caution. Circ Heart Fail. 2010; 3(3):362-9.
- [20]Maron BJ. Surgery for hypertrophic obstructive cardiomyopathy: alive and quite well. Circulation. 2005; 111(16):2016-8.