| Clinical and Molecular Allergy | |
| Engineered metal based nanoparticles and innate immunity | |
| Mario Di Gioacchino4  Roberto Paganelli4  Takemi Otsuki7  Qiao Niu1  Sara Cortese4  Ivo Iavicoli5  Giovanni Bernardini3  Enrico Sabbioni6  Paola Pedata2  Valentina Amato6  Emanuela Clemente4  Claudia Petrarca6  | |
| [1] School of Public Health, Shanxi Medical University, Taiyuan, People’s Republic of China;Occupational Medicine, II University, Naples, Italy;‘Protein Factory’, Interuniversity Center of the Politecnico di Milano and University of Insubria, Milan, Italy;Department of Medicine and Science of Ageing, G. d’Annunzio University, Chieti, Italy;Institute of Public Health, Catholic University of the Sacred Heart, Rome, Italy;Immunotoxicology and Allergy Unit, Ageing Research Center G. d’Annunzio University Foundation, Chieti, Italy;Department of Hygiene, Kawasaki Medical School, Kurashiki 7010192, Okayama, Japan | |
| 关键词: Cytokines; Adjuvant; Barriers; Immunostimulation; Cell receptors; Immunotoxicity; | |
| Others : 1220052 DOI : 10.1186/s12948-015-0020-1 |
|
| received in 2015-02-09, accepted in 2015-04-29, 发布年份 2015 | |
PDF
|
|
【 摘 要 】
Almost all people in developed countries are exposed to metal nanoparticles (MeNPs) that are used in a large number of applications including medical (for diagnostic and therapeutic purposes). Once inside the body, absorbed by inhalation, contact, ingestion and injection, MeNPs can translocate to tissues and, as any foreign substance, are likely to encounter the innate immunity system that represent a non-specific first line of defense against potential threats to the host. In this review, we will discuss the possible effects of MeNPs on various components of the innate immunity (both specific cells and barriers). Most important is that there are no reports of immune diseases induced by MeNPs exposure: we are operating in a safe area. However, in vitro assays show that MeNPs have some effects on innate immunity, the main being toxicity (both cyto- and genotoxicity) and interference with the activity of various cells through modification of membrane receptors, gene expression and cytokine production. Such effects can have both negative and positive relevant impacts on humans. On the one hand, people exposed to high levels of MeNPs, as workers of industries producing or applying MeNPs, should be monitored for possible health effects. On the other hand, understanding the modality of the effects on immune responses is essential to develop medical applications for MeNPs. Indeed, those MeNPs that are able to stimulate immune cells could be used to develop of new vaccines, promote immunity against tumors and suppress autoimmunity.
【 授权许可】
2015 Petrarca et al.; licensee BioMed Central.
【 预 览 】
| Files | Size | Format | View |
|---|---|---|---|
| 20150721034033187.pdf | 517KB |
【 参考文献 】
- [1]Di Gioacchino, M., Verna, N., Gornati, R., Sabbioni, E. and Bernardini, G. (2009) Metal Nanoparticle Health Risk Assessment, in Nanotoxicity (eds S. C. Sahu and D. A. Casciano), John Wiley & Sons, Ltd, Chichester, UK. doi:10.1002/9780470747803.ch24.
- [2]http://www.understandingnano.com/nanoparticles.html. Last seen January 22, 2015.
- [3]Jain KK. Nanomedicine: application of nanobiotechnology in medical practice. Med Princ Pract. 2008; 17:89-101.
- [4]Zhao W, Karp JM, Ferrari M, Serda R. Bioengineering nanotechnology: towards the clinic. Nanotechnology. 2011.
- [5]Conde J, Rosa J, Lima JC, Baptista PV. Nanophotonics for Molecular Diagnostics and Therapy Applications. Int J Photoenergy. 2011; doi:10.1155/2012/619530/2012/619530.
- [6]Baptista PV, Doria G, Quaresma P, Cavadas M, Neves CS, Gomes I et al.. Nanoparticles in molecular diagnostics. Prog Mol Biol Transl Sci. 2011; 104:427-88.
- [7]Nel AE, Mädler L, Velegol D, Xia T, Hoek EMV, Somasundaran P et al.. Understanding biophysicochemical interactions at the nano-bio interface. Nat Mater. 2009; 7:543-57.
- [8]Schrand AM, Rahman MF, Hussain SM, Schlager JJ, Smith DA, Syed AF. Metal-based nanoparticles and their toxicity assessment. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2010; 2:544-68.
- [9]Calabrese EJ. Hormesis mechanisms. Crit Rev Toxicol. 2013; 43:580-606.
- [10]Hayes AW. Principles and Methods of Toxicology. 6th ed. CRC Press, London, UK; 2007.
- [11]Borm PJ, Robbins D, Haubold S, Kuhlbusch T, Fissan H, Donaldson K et al.. The potential risks of nanomaterials: a review carried out for ECETOC. Part Fibre Toxicol. 2006; 14:3-11.
- [12]Bernardini G, Cattaneo AG, Sabbioni E, Di Gioacchino M, Chiriva-Internati M, Gornati R. Toxicology of engineered metal nanoparticles. General, applied and systems toxicology. Ballantyne B, Marrs TC, Syversen T, Casciano DA, Sahu SC, editors. Chichester, UK, John Wiley & Sons, Ltd; 2009.
- [13]Immunity I. In Kuby editor. Immunology. W. H. Freeman and Company, New York; 2009.
- [14]Nel A, Xia T, Mädler L, Li N. Toxic potential of materials at the nanolevel. Science. 2006; 311:622-7.
- [15]Mantovani A. Molecular pathways linking inflammation and cancer. Curr Mol Med. 2010; 10:369-73.
- [16]Kodali V, Littke MH, Tilton SC, Teeguarden JG, Shi L, Frevert CW et al.. Dysregulation of macrophage activation profiles by engineered nanoparticles. ACS Nano. 2013; 7:6997-7010.
- [17]Xia T, Hamilton RF, Bonner JC, Crandall ED, Elder A, Fazlollahi F. Responses to engineered nanomaterials: The NIEHS Nano GO Consortium. Environ Health Perspect. 2013; 121:683-90.
- [18]Poma A, Ragnelli AM, de Lapuente J, Ramos D, Borras M, Aimola P, et al. In vivo inflammatory effects of ceria nanoparticles on CD-1 mouse: evaluation by hematological, histological, and TEM analysis. J Immunol Res. 2014;doi:10.1155/2014/361419.
- [19]Zhang Q, Xu L, Wang J, Sabbioni E, Piao L, Di Gioacchino M et al.. Lysosomes involved in the cellular toxicity of nano-alumina: combined effects of particle size and chemical composition. J Biol Regul Homeost Agents. 2013; 27:365-75.
- [20]Petrarca C, Clemente E, Di Giampaolo L, Mariani-Costantini R, Leopold K, Schindl R, et al. Palladium nanoparticles induce disturbances in cell cycle entry and progression of peripheral blood mononuclear cells: paramount role of ions. J Immunol Res. 2014;2014:doi:10.1155/2014/295092.
- [21]Gornati R, Papis E, Di Gioacchino M, Sabbioni E, Dalle-Donne I, Milzani A et al.. In vivo and in vitro models for nanotoxicology testing (pages 279–302) in nanotoxicity. From in vivo and in models to health risks. Sahu SC, Casciano DA, editors. John Wiley & Sons, Ltd, NY; 2009.
- [22]Benetti F, Bregoli L, Olivato I, Sabbioni E. Effects of metal (loid) nanomaterials on essential element homeostasis: the central role of nanometallomics for nanotoxicology. Metallomics. 2014; 6:729-47.
- [23]Nordberg Gunnar MF, Nordberg BA, Fowler LF. Handbook on the Toxicology of Metals. 3rd ed. Academic Press, Walthman, MA, USA; 2011.
- [24]Boscolo P, Bellante V, Leopold K, Maier M, Di Giampaolo L, Antonucci A et al.. Effects of palladium nanoparticles on the cytokine release from peripheral blood mononuclear cells of non-atopic women. J Biol Regul Homeost Agents. 2010; 24:207-14.
- [25]Lester SN, Li K. Toll-like receptors in antiviral innate immunity. J Mol Biol. 2014; 426:1246-64.
- [26]Potnis P, Dutta DK, Wood SC. Toll-like receptor 4 signaling pathway mediates proinflammatory immune response to cobalt-alloy particles. Cell Immunol. 2013; 282:53-65.
- [27]Monteiller C, Tran L, MacNee W, Faux S, Jones A, Miller B et al.. The pro-inflammatory effects of low-toxicity low-solubility particles, nanoparticles and fine particles, on epithelial cells in vitro: the role of surface area. Occup Environ Med. 2007; 64:609-15.
- [28]Peters K, Unger RE, Gatti AM, Sabbioni E, Tsaryk R, Kirkpatrick CJ. Metallic nanoparticles exhibit paradoxical effects on oxidative stress and pro-inflammatory response in endothelial cells in vitro. Int J Immunopathol Pharmacol. 2007; 20:685-95.
- [29]Horev-Azaria L, Kirkpatrick CJ, Korenstein R, Marche PN, Maimon O, Ponti J et al.. Predictive toxicology of cobalt nanoparticles and ions: comparative in vitro study of different cellular models using methods of knowledge discovery from data. Toxicol Sci. 2011; 122:489-501.
- [30]Andersson-Willman B, Gehrmann U, Cansu Z, Buerki-Thurnherr T, Krug HF, Gabrielsson S et al.. Effects of subtoxic concentrations of TiO2 and ZnO nanoparticles on human lymphocytes, dendritic cells and exosome production. Toxicol Appl Pharmacol. 2012; 264:94-103.
- [31]Moon JJ, Huang B, Irvine DJ. Engineering nano- and microparticles to tune immunity. Adv Mater. 2012; 24:3724-46.
- [32]Kennedy LC, Bear AS, Young JK, Lewinski NA, Kim J, Foster AE, et al. T cells enhance gold nanoparticle delivery to tumors in vivo. Nanoscale Res Lett. 2011;doi:10.1186/1556-276X-6-283.
- [33]Wilhelmi V, Fischer U, Weighardt H, Schulze-Osthoff K, Nickel C, Stahlmecke B et al.. Zinc oxide nanoparticles induce necrosis and apoptosis in macrophages in a p47phox- and Nrf2-independent manner. PLoS One. 2013; 8: Article ID e65704
- [34]Buerki-Thurnherr T, Xiao L, Diener L, Arslan O, Hirsch C, Maeder-Althaus X et al.. In vitro mechanistic study towards a better understanding of ZnO nanoparticle toxicity. Nanotoxicology. 2013; 7:402-16.
- [35]Hussain S, Garantziotis S. Interplay between apoptotic and autophagy pathways after exposure to cerium dioxide nanoparticles in human monocytes. Autophagy. 2013; 9:101-3.
- [36]Vandebriel RJ, De JWH. A review of mammalian toxicity of ZnO nanoparticles. Nanotechnol Sci Appl. 2012; 5:61-71.
- [37]Shavandi Z, Ghazanfari T, Moghaddam KN. In vitro toxicity of silver nanoparticles on murine peritoneal macrophages. Immunopharmacol Immunotoxicol. 2011; 33:135-40.
- [38]Lim DH, Jang J, Kim S, Kang T, Lee K, Choi IH. The effects of sub-lethal concentrations of silver nanoparticles on inflammatory and stress genes in human macrophages using cDNA microarray analysis. Biomaterials. 2012; 33:4690-9.
- [39]Yang AJ, Kim S, Kim JS, Choi IH. Inflammasome formation and IL-1β release by human blood monocytes in response to silver nanoparticles. Biomaterials. 2012; 33:6858-67.
- [40]Feltis BN, OKeefe SJ, Harford AJ, Piva TJ, Turney TW, Wright PFA. Independent cytotoxic and inflammatory responses to zinc oxide nanoparticles in human monocytes and macrophages. Nanotoxicology. 2012; 6:757-65.
- [41]Petrarca C, Perrone A, Verna N, Verginelli F, Ponti J, Sabbioni E et al.. Cobalt nano-particles modulate cytokine in vitro release by human mononuclear cells mimicking autoimmune disease. Int J Immunopathol Pharmacol. 2006; 19 Suppl:11-4.
- [42]Karlsson HL, Cronholm P, Gustafsson J, Möller L. Copper oxide nanoparticles are highly toxic: a comparison between metal oxide nanoparticles and carbon nanotubes. Chem Res Toxicol. 2008; 21:1726-32.
- [43]Kim JS, Adamcakova-Dodd A, O’Shaughnessy PT, Grassian VH, Thorne PS. Effects of copper nanoparticle exposure on host defense in a murine pulmonary infection model. Part Fibre Toxicol. 2011;doi:10.1186/1743-8977-8-29.
- [44]Shvedova AA, Fabisiak JP, Kisin ER, Murray AR, Roberts JR, Tyurina YY et al.. Sequential exposure to carbon nanotubes and bacteria enhances pulmonary inflammation and infectivity. Am J Respir Cell Mol Biol. 2008; 38:579-90.
- [45]Li Y, Karlin A, Loike JD, Silverstein SC. A critical concentration of neutrophils is required for effective bacterial killing in suspension. Proc Natl Acad Sci U S A. 2002; 99:8289-94.
- [46]Craig A, Mai J, Cai S, Jeyaseelan S. Neutrophil recruitment to the lungs during bacterial pneumonia. Infect Immun. 2009; 77:568-75.
- [47]Ban M, Langonné I, Huguet N, Goutet M. Effect of submicron and nano-iron oxide particles on pulmonary immunity in mice. Toxicol Lett. 2012; 210:267-75.
- [48]Tuomela S, Autio R, Buerki-Thurnherr T, Arslan O, Kunzmann A, Andersson-Willman B et al.. Gene expression profiling of immune-competent human cells exposed to engineered zinc oxide or titanium dioxide nanoparticles. PLoS One. 2013; 8: Article ID e68415
- [49]Chatterjee S, Sarkar S, Bhattacharya S. Toxic metals and autophagy. Chem Res Toxicol. 2014; 27:1887-900.
- [50]Di Gioacchino M, Petrarca C, Perrone A, Farina M, Sabbioni E, Hartung T et al.. Autophagy as an ultrastructural marker of heavy metal toxicity in human cord blood hematopoietic stem cells. Sci Total Environ. 2008; 392:50-8.
- [51]Roy R, Singh SK, Chauhan LK, Das M, Tripathi A, Dwivedi PD. Zinc oxide nanoparticles induce apoptosis by enhancement of autophagy via PI3K/Akt/mTOR inhibition. Toxicol Lett. 2014; 227:29-40.
- [52]Muthu MS, Leong DT, Mei L, Feng SS. Nanotheranostics - application and further development of nanomedicine strategies for advanced theranostics. Theranostics. 2014; 4:660-77.
- [53]Mariño G, Niso-Santano M, Baehrecke EH, Kroemer G. Self-consumption: the interplay of autophagy and apoptosis. Nat Rev Mol Cell Biol. 2014; 15:81-94.
- [54]Di Gioacchino M, Petrarca C, Perrone A, Martino S, Esposito DL, Lotti LV et al.. Autophagy in hematopoietic stem/progenitor cells exposed to heavy metals: Biological implications and toxicological relevance. Autophagy. 2008; 4:537-9.
- [55]Bhattacharya A, Prakash YS, Eissa NT. Secretory function of autophagy in innate immune cells. Cell Microbiol. 2014; 16:1637-45.
- [56]Deretic V, Saitoh T, Akira S. Autophagy in infection, inflammation and immunity. Nat Rev Immunol. 2013; 13:722-37.
- [57]Di Gioacchino M, Clemente E, Mangifesta R, Sabbioni E, Petrarca C. Current evidences and uncertainties of selected, less toxicologically-studied nanoparticles. Proceedings of Nanotechitaly conference, Mestre, Italy; 2013.
- [58]Sabbioni E, Fortaner S, Farina M, Del Torchio R, Olivato I, Petrarca C et al.. Cytotoxicity and morphological transforming potential of cobalt nanoparticles, microparticles and ions in Balb/3 T3 mouse fibroblasts: an in vitro model. Nanotoxicology. 2014; 8:455-64.
- [59]Sabbioni E, Fortaner S, Farina M, Del Torchio R, Petrarca C, Bernardini G et al.. Interaction with culture medium components, cellular uptake and intracellular distribution of cobalt nanoparticles, microparticles and ions in Balb/3 T3 mouse fibroblasts. Nanotoxicology. 2014; 8:88-99.
- [60]Perconti S, Aceto GM, Verginelli F, Napolitano F, Petrarca C, Bernardini G, Raiconi G, Tagliaferri R, Sabbioni E, Di Gioacchino M, Mariani-Costantini R. Distinctive gene expression profiles in Balb/3T3 cells exposed to low dose cobalt nanoparticles, microparticles and ions: potential nanotoxicological relevance. J Biol Regul Homeost Agents. 2013; 27(2):443-54.
- [61]Aggarwal P, Hall JB, McLeland CB, Dobrovolskaia MA, McNeil SE. Nanoparticle interaction with plasma proteins as it relates to particle biodistribution, biocompatibility and therapeutic efficacy. Adv Drug Deliv Rev. 2009; 61:428-37.
- [62]Dobrovolskaia MA, Aggarwal P, Hall JB, McNeil SE. Preclinical studies to understand nanoparticle interaction with the immune system and its potential effects on nanoparticle biodistribution. Mol Pharm. 2008; 5:487-95.
- [63]Dobrovolskaia MA, McNeil SE. Immunological properties of engineered nanomaterials. Nat Nanotechnol. 2007; 2:469-78.
- [64]Gamucci O, Gagliardi A, Bertero M, Bardi G. Biomedical nanoparticles: overview of their surface immune-compatibility. Coatings. 2014; 1:139-59.
- [65]Moghimi SM. Chemical camouflage of nanospheres with a poorly reactive surface: towards development of stealth and target-specific nanocarriers. Biochim Biophys Acta. 2002; 1590:131-9.
- [66]Ishida T, Wang X, Shimizu T, Nawata K, Kiwada H. PEGylated liposomes elicit an anti-PEG IgM response in a T cell-independent manner. J Control Release. 2007; 122:349-55.
- [67]Wang X, Ishida T, Kiwada H. Anti-PEG IgM elicited by injection of liposomes is involved in the enhanced blood clearance of a subsequent dose of PEGylated liposomes. J Control Release. 2007; 119:236-44.
- [68]Ishida T, Kiwada H. Accelerated blood clearance (ABC) phenomenon upon repeated injection of PEGylated liposomes. Int J Pharm. 2008; 354:56-62.
- [69]Kunzmann A, Andersson B, Vogt C, Feliu N, Ye F, Gabrielsson S et al.. Efficient internalization of silica-coated iron oxide nanoparticles of different sizes by primary human macrophages and dendritic cells. Toxicol Appl Pharmacol. 2011; 253:81-93.
- [70]Blank F, Gerber P, Rothen-Rutishauser B, Sakulkhu U, Salaklang J, De Peyer K et al.. C. Biomedical nanoparticles modulate specific CD4+ T cell stimulation by inhibition of antigen processing in dendritic cells. Nanotoxicology. 2011; 5:606-21.
- [71]Braden BC, Goldbaum FA, Chen BX, Kirschner AN, Wilson SR, Erlanger BF. X-ray crystal structure of an anti-Buckminster- fullerene antibody fab fragment: biomolecular recognition of C(60). Proc Natl Acad Sci U S A. 2000; 97:12193-7.
- [72]Chen BX, Wilson SR, Das M, Coughlin DJ, Erlanger BF. Antigenicity of fullerenes: antibodies specific for fullerenes and their characteristics. Proc Natl Acad Sci U S A. 1998; 95:10809-13.
- [73]Hendickson O, Fedyunina N, Zherdev A, Solopova O. Svechnikov p, Dzantiev P. Production of monoclonal antibodies against fullerenes C60 and development of a fullerene enzyme assay. Analyst. 2012; 137:98-105.
- [74]Agashe HB, Dutta T, Garg M, Jain NK. Investigations on the toxicological profile of functionalized fifth-generation poly (pro- pylene imine) dendrimer. J Pharm Pharmacol. 2006; 58:1491-8.
- [75]Andreev SM, Babakhin AA, Petrukhina AO, Romanova VS, Parnes ZN, Petrov RV. Immunogenic and allergenic properties of fullerene conjugates with amino acids and proteins. Dokl Biochem. 2000; 370:4-7.
- [76]Tomii A, Masugi F. Production of anti-platelet-activating factor antibodies by the use of colloidal gold as carrier. Jpn J Med Sci Biol. 1991; 44:75-80.
- [77]Larsen ST, Roursgaard M, Jensen KA, Nielsen GD. Nano titanium dioxide particles promote allergic sensitization and lung inflammation in mice. Basic Clin Pharmacol Toxicol. 2010; 106:114-7.
- [78]Gustafsson A, Lindstedt E, Elfsmark LS, Bucht A. Lung exposure of titanium dioxide nanoparticles induces innate immune activation and long-lasting lymphocyte response in the dark agouti rat. J Immunotoxicol. 2011; 8:111-21.
- [79]Chang X, Fu Y, Zhang Y, Tang M, Wang B. Effects of Th1 and Th2 cells balance in pulmonary injury induced by nano titanium dioxide. Environ Toxicol Pharmacol. 2013; 37:275-83.
- [80]Chuang HC, Hsiao TC, Wu CK, Chang HH, Lee CH, Chang CC et al.. Allergenicity and toxicology of inhaled silver nanoparticles in allergen-provocation mice models. Int J Nanomedicine. 2013; 8:4495-506.
- [81]Roy R, Kumar S, Verma AK, Sharma A, Chaudhari BP, Tripathi A et al.. Zinc oxide nanoparticles provide an adjuvant effect to ovalbumin via a Th2 response in Balb/c mice. Int Immunol. 2014; 26:159-72.
- [82]Zhu M, Tian X, Song X, Li Y, Tian Y, Zhao Y et al.. Nanoparticle-induced exosomes target antigen-presenting cells to initiate Th1-type immune activation. Small. 2012; 8:2841-8.
- [83]Cho WS, Duffin R, Bradley M, Megson IL, Macnee W, Howie SE et al.. NiO and Co3O4 nanoparticles induce lung DTH-like responses and alveolar lipoproteinosis. Eur Respir J. 2012; 39:546-57.
- [84]Reale M, Vianale G, Lotti LV, Mariani-Costantini R, Perconti S, Cristaudo A et al.. Effects of palladium nanoparticles on the cytokine release from peripheral blood mononuclear cells of palladium-sensitized women. J Occup Environ Med. 2011; 53:1054-60.
- [85]Di Gioacchino M, Petrarca C, Lazzarin F, Di Giampaolo L, Sabbioni E, Boscolo P et al.. Immunotoxicity of nanoparticles. Int J Immunopathol Pharmacol. 2011; 24(1supll):65-71.
- [86]Hardy CL, Lemasurier JS, Mohamud R, Yao J, Xiang SD, Rolland JM et al.. Differential uptake of nanoparticles and microparticles by pulmonary APC subsets induces discrete immunological imprints. J Immunol. 2013; 191:5278-90.
- [87]Park HS, Kim KH, Jang S, Park JW, Cha HR, Lee JE et al.. Attenuation of allergic airway inflammation and hyperresponsiveness in a murine model of asthma by silver nanoparticles. Int J Nanomedicine. 2010; 5:505-15.
- [88]Ryan JJ, Bateman HR, Stover A, Gomez G, Norton SK, Zhao W et al.. Fullerene nanomaterials inhibit the allergic response. J Immunol. 2007; 179:665-72.
- [89]Marquis BJ, Liu Z, Braun KL, Haynes CL. Investigation of noble metal nanoparticle ζ-potential effects on single-cell exocytosis function in vitro with carbon-fiber microelectrode amperometry. Analyst. 2011; 136:3478-86.
- [90]Wang YT, Lu XM, Zhu F, Huang P, Yu Y, Zeng L et al.. The use of a gold nanoparticle-based adjuvant to improve the therapeutic efficacy of hNgR-Fc protein immunization in spinal cord-injured rats. Biomaterials. 2011; 32:7988-98.
- [91]Banchereau J, Briere F, Caux C, Davoust J, Lebecque S, Liu YT et al.. Immunobiology of Dendritic Cells. Annu Rev Immunol. 2000; 18:767-811.
- [92]Sun B, Ji Z, Liao YP, Wang M, Wang X, Dong J et al.. Engineering an effective immune adjuvant by designed control of shape and crystallinity of aluminum oxyhydroxide nanoparticles. ACS Nano. 2013; 7:10834-49.
- [93]Cruz LJ, Tacken PJ, Bonetto F, Buschow SI, Croes HJ, Wijers M et al.. Multimodal imaging of nanovaccine carriers targeted to human dendritic cells. Mol Pharm. 2011; 8:520-31.
- [94]Wanga Y, Matsukurab S, Watanabea S, Adachib M, Suzakia H. Involvement of Toll-like receptors in the immune response of nasal polyp epithelial cells. Clin Immunol. 2007; 124:345-52.
- [95]Yeh CY, Yeh TH, Jung CJ, Chen PL, Lien HT. Activated human nasal epithelial cells modulate specific antibody response against bacterial or viral antigens. PLoS One. 2013; 8: Article ID e55472
- [96]Sung JH, Ji JH, Park JD, Yoon JU, Kim DS, Jeon KS et al.. Subchronic inhalation toxicity of silver nanoparticles. Toxicol Sci. 2009; 108:452-61.
- [97]Sung JH, Ji JH, Yoon JU, Kim DS, Song MY, Jeong J et al.. Lung function changes in Sprague–Dawley rats after prolonged inhalation exposure to silver nanoparticles. Inhal Toxicol. 2008; 20:567-74.
- [98]Li N, Xia T, Nel AE. The role of oxidative stress in ambient particulate matter-induced lung diseases and its implications in the toxicity of engineered nanoparticles. Free Radic Biol Med. 2008; 44:1689-99.
- [99]Eom H, Choi J. Oxidative stress of silica nanoparti- cles in human bronchial epithelial cell, Beas-2B. Toxicol In Vitro. 2009; 23:1326-32.
- [100]Huang CC, Aronstam RS, Chen D, Huang YW. Oxidative stress, calcium homeostasis, and altered gene expression in human lung epithelial cells exposed to ZnO nanoparticles. Toxicol In Vitro. 2010; 24:45-55.
- [101]Kim S, Choi JE, Choi J, Chung KH, Park K, Yi J et al.. Oxidative stress-dependent toxicity of silver nano- particles in human hepatoma cells. Toxicol In Vitro. 2009; 23:1076-84.
- [102]Park E, Choi J, Park Y, Park K. Oxidative stress induced by cerium oxide nanoparticles in cultured BEAS-2B cells. Toxicology. 2008; 245:90-100.
- [103]Park E, Yi J, Chung K, Ryu D, Choi J, Park K. Oxidative stress and apoptosis induced by titanium dioxide nanoparticles in cultured BEAS-2B cells. Toxicol Lett. 2008; 180:222-9.
- [104]Urner M, Schlicker A, Z’graggen BR, Stepuk A, Booy C, Buehler KP et al.. Inflammatory response of lung macrophages and epithelial cells after exposure to redox active nanoparticles: effect of solubility and antioxidant treatment. Environ Sci Technol. 2014; 48:13960-8.
- [105]Mesárošová M, Kozics K, Bábelová A, Regendová E, Pastorek M, Vnuková D et al.. The role of reactive oxygen species in the genotoxicity of surface-modified magnetite nanoparticles. Toxicol Lett. 2014; 226:303-13.
- [106]Risom L, Møller P, Loft S. Oxidative stress-induced DNA damage by particulate air pollution. Mutat Res. 2005; 592:119-37.
- [107]Johnson TM, Yu ZX, Ferrans VJ, Lowenstein RA, Finkel T. Reactive oxygen species are downstream mediators of p53-dependent apoptosis. Proc Natl Acad Sci. 1996; 93:11848-52.
- [108]Pandya NM, Jain SM, Santani DD. Apoptosis: a friend or foe. Internet J Pharmacol. 2006; 4:1-21.
- [109]Verstraelen S, Remy S, Casals E, De Boever P, Witters H, Gatti A et al.. Gene expression profiles reveal distinct immunological responses of cobalt and cerium dioxide nanoparticles in two in vitro lung epithelial cell models. Toxicol Lett. 2014; 228:157-69.
- [110]Capasso L, Camatini M, Gualtieri M. Nickel oxide nanoparticles induce inflammation and genotoxic effect in lung epithelial cells. Toxicol Lett. 2014; 226:28-34.
- [111]Yan Z, Xu L, Han J, Wu YJ, Wang W, Yao W et al.. Transcriptional and posttranscriptional regulation and endocytosis were involved in zinc oxide nanoparticle-induced interleukin-8 overexpression in human bronchial epithelial cells. Cell Biol Toxico. 2014; 30:79-88.
- [112]Bacchetta R, Moschini E, Santo N, Fascio U, Del Giacco L, Freddi S et al.. Evidence and uptake routes for Zinc oxide nanoparticles through the gastrointestinal barrier in Xenopus laevis. Nanotoxicology. 2014; 8:728-44.
- [113]Abbott Chalew TE, Schwab KJ. Toxicity of commercially available engineered nanoparticles to Caco-2 and SW480 human intestinal epithelial cells. Cell Biol Toxicol. 2013; 29:101-16.
- [114]Avdeef A, Testa B. Physicochemical profiling in drug research: a brief survey of the state-of-the-art of experimental techniques. Cell Mol Life Sci. 2002; 59:1681-9.
- [115]Chen EY, Garnica M, Wang YC, Chen CS, Chin WC. Mucin secretion induced by titanium dioxide nanoparticles. PLoS One. 2011; 6: Article ID e16198
- [116]Jeong GN, Jo UB, Ryu HY, Kim YS, Song KS, Yu IJ. Histochemical study of intestinal mucins after administration of silver nanoparticles in Sprague–Dawley rats. Arch Toxicol. 2010; 84:63-9.
- [117]Shahare B, Yashpal M. Toxic effects of repeated oral exposure of silver nanoparticles on small intestine mucosa of mice. Toxicol Mech Methods. 2013; 23:161-7.
- [118]Khan FR, Kennaway GM, Croteau MN, Dybowska A, Smith BD, Nogueira AJ et al.. In vivo retention of ingested Au NPs by Daphnia magna: no evidence for trans-epithelial alimentary uptake. Chemosphere. 2014; 100:97-104.
- [119]Al-Jubory AR, Handy RD. Uptake of titanium from TiO 2 nanoparticle exposure in the isolated perfused intestine of rainbow trout: nystatin, vanadate and novel CO 2 -sensitive components. Nanotoxicology. 2013; 7:1282-301.
- [120]Koeneman BA, Zhang Y, Westerhoff P, Chen Y, Crittenden JC, Capco DG. Toxicity and cellular responses of intestinal cells exposed to titanium dioxide. Cell Biol Toxicol. 2010; 26:225-38.
- [121]Geiser M, Rothen-Rutishauser B, Kapp N, Schurch S, Kreyling W, Schulz H et al.. Ultrafine particles cross cellular membranes by nonphagocytic mechanisms in lungs and in cultured cells. Environ Health Perspect. 2005; 113:1555-60.
- [122]Greulich C, Diendorf J, Simon T, Eggeler G, Epple M, Koller M. Uptake and intracellular distribution of silver nanoparticles in human mesenchymal stem cells. Acta Biomater. 2011; 7:347-54.
- [123]Singh S, Shi T, Duffin R, Albrecht C, van Berlo D, Hohr D et al.. Endocytosis, oxidative stress and IL-8 expression in human lung epithelial cells upon treatment with fine and ultrafine TiO2: role of the specific surface area and of surface methylation of the particles. Toxicol Appl Pharmacol. 2007; 222:141-51.
- [124]Sun W, Fang N, Trewyn BG, Tsunoda M, Slowing II, Lin VS et al.. Endocytosis of a single mesoporous silica nanoparticle into a human lung cancer cell observed by differential interference contrast microscopy. Anal Bioanal Chem. 2008; 391:2119-25.
- [125]Jang MH, Kweon MN, Iwatani K, Yamamoto M, Terahara C, Sasakawa C et al.. Intestinale villous M cells: an antigen entry site in the mucosal epithelium. Proc Natl Acad Sci U S A. 2004; 101:6110-5.
- [126]Ragnarsson EG, Schoultz I, Gullberg E, Carlsson AH, Tafazoli F, Lerm M et al.. Yersinia pseudotuberculosis induces transcytosis of nanoparticles across human intestinal villus epithelium via invasin-dependent macropinocytosis. Lab Invest. 2008; 88:1215-26.
- [127]Leonhard F, Collnot EM, Lehr CM. A three-dimensional coculture of enterocytes, monocytes and dendritic cells to model inflamed intestinal mucosa in-vitro. Mol Pharm. 2010; 7:2103-19.
- [128]Fröhlicha E, Robleggc E. Models for oral uptake of nanoparticles in consumer products. Toxicology. 2012; 291:10-7.
- [129]Kosuda LL, Bigazzi EP. Chemical-induced autoimmunity. pag 419–468. Experimental immunotoxicology. Smialowicz RR, Holsapple MP, editors. CRC Press, Boca Raton, Fl, USA; 1996.
- [130]Casati S, Aeby P, Basketter DA, Cavani A, Gennari A, Gerberick GF et al.. Report and recommendations of ECVAM workshop 51. Dendritic cells as a tool for the predictive identification of skin sensiti- sation hazard. Altern Lab Anim. 2005; 33:47-62.
- [131]Luster MI, Portier C, Pait DG, White KL, Gennings C, Munson AE et al.. Risk assessment in immunotoxicology. I. Sensitivity and predictability of immune tests. Fund Appl Toxicol. 1992; 18:200-10.
- [132]Descotes J. Methods of evaluating immunotoxicity. Expert Opin Drug Metab Toxicol. 2006; 2:249-59.
PDF