| Journal of Neuroinflammation | |
| Low-level laser therapy regulates microglial function through Src-mediated signaling pathways: implications for neurodegenerative diseases | |
| Wei R Chen2  Feifan Zhou1  Sheng Song1  | |
| [1] MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, No. 55 Zhongshan Avenue West, Guangzhou, Tianhe District, 510631, China;Department of Engineering and Physics, University of Central Oklahoma, 100 North University Drive, Edmond, Oklahoma, 73034, USA | |
| 关键词: TLR; LLLT; Phagocytosis; Inflammation; Microglia; | |
| Others : 1160248 DOI : 10.1186/1742-2094-9-219 |
|
| received in 2012-04-03, accepted in 2012-08-22, 发布年份 2012 | |
PDF
|
|
【 摘 要 】
Background
Activated microglial cells are an important pathological component in brains of patients with neurodegenerative diseases. The purpose of this study was to investigate the effect of He-Ne (632.8 nm, 64.6 mW/cm2) low-level laser therapy (LLLT), a non-damaging physical therapy, on activated microglia, and the subsequent signaling events of LLLT-induced neuroprotective effects and phagocytic responses.
Methods
To model microglial activation, we treated the microglial BV2 cells with lipopolysaccharide (LPS). For the LLLT-induced neuroprotective study, neuronal cells with activated microglial cells in a Transwell™ cell-culture system were used. For the phagocytosis study, fluorescence-labeled microspheres were added into the treated microglial cells to confirm the role of LLLT.
Results
Our results showed that LLLT (20 J/cm2) could attenuate toll-like receptor (TLR)-mediated proinflammatory responses in microglia, characterized by down-regulation of proinflammatory cytokine expression and nitric oxide (NO) production. LLLT-triggered TLR signaling inhibition was achieved by activating tyrosine kinases Src and Syk, which led to MyD88 tyrosine phosphorylation, thus impairing MyD88-dependent proinflammatory signaling cascade. In addition, we found that Src activation could enhance Rac1 activity and F-actin accumulation that typify microglial phagocytic activity. We also found that Src/PI3K/Akt inhibitors prevented LLLT-stimulated Akt (Ser473 and Thr308) phosphorylation and blocked Rac1 activity and actin-based microglial phagocytosis, indicating the activation of Src/PI3K/Akt/Rac1 signaling pathway.
Conclusions
The present study underlines the importance of Src in suppressing inflammation and enhancing microglial phagocytic function in activated microglia during LLLT stimulation. We have identified a new and important neuroprotective signaling pathway that consists of regulation of microglial phagocytosis and inflammation under LLLT treatment. Our research may provide a feasible therapeutic approach to control the progression of neurodegenerative diseases.
【 授权许可】
2012 Song et al.; licensee BioMed Central Ltd.
【 预 览 】
| Files | Size | Format | View |
|---|---|---|---|
| 20150410100539241.pdf | 3024KB | ||
| Figure 7. | 72KB | Image | |
| Fig. 1. | 81KB | Image | |
| Figure 5. | 121KB | Image | |
| Figure 4. | 118KB | Image | |
| Figure 3. | 75KB | Image | |
| Figure 2. | 175KB | Image | |
| Figure 1. | 79KB | Image |
【 图 表 】
Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Fig. 1.
Figure 7.
【 参考文献 】
- [1]Perry VH, Nicoll JA, Holmes C: Microglia in neurodegenerative disease. Nat Rev Neurol 2010, 6:193-201.
- [2]Qin L, Liu Y, Cooper C, Liu B, Wilson B, Hong JS: Microglia enhance beta-amyloid peptide-induced toxicity in cortical and mesencephalic neurons by producing reactive oxygen species. J Neurochem 2002, 83:973-983.
- [3]Gao HM, Hong JS, Zhang W, Liu B: Distinct role for microglia in rotenone-induced degeneration of dopaminergic neurons. J Neurosci 2002, 22:782-790.
- [4]Garden GA, Moller T: Microglia biology in health and disease. J Neuroimmune Pharmacol 2006, 1:127-137.
- [5]Block ML, Zecca L, Hong JS: Microglia-mediated neurotoxicity: uncovering the molecular mechanisms. Nat Rev Neurosci 2007, 8:57-69.
- [6]Stalder AK, Pagenstecher A, Yu NC, Kincaid C, Chiang CS, Hobbs MV, Bloom FE, Campbell IL: Lipopolysaccharide-induced IL-12 expression in the central nervous system and cultured astrocytes and microglia. J Immunol 1997, 159:1344-1351.
- [7]Henry CJ, Huang Y, Wynne AM, Godbout JP: Peripheral lipopolysaccharide (LPS) challenge promotes microglial hyperactivity in aged mice that is associated with exaggerated induction of both pro-inflammatory IL-1beta and anti-inflammatory IL-10 cytokines. Brain Behav Immun 2009, 23:309-317.
- [8]Jana M, Palencia CA, Pahan K: Fibrillar amyloid-beta peptides activate microglia via TLR2: implications for Alzheimer’s disease. J Immunol 2008, 181:7254-7262.
- [9]Walter S, Letiembre M, Liu Y, Heine H, Penke B, Hao W, Bode B, Manietta N, Walter J, Schulz-Schuffer W, Fassbender K: Role of the toll-like receptor 4 in neuroinflammation in Alzheimer’s disease. Cell Physiol Biochem 2007, 20:947-956.
- [10]Jin JJ, Kim HD, Maxwell JA, Li L, Fukuchi K: Toll-like receptor 4-dependent upregulation of cytokines in a transgenic mouse model of Alzheimer’s disease. J Neuroinflammation 2008, 5:23. BioMed Central Full Text
- [11]Ben-Dov N, Shefer G, Irintchev A, Wernig A, Oron U, Halevy O: Low-energy laser irradiation affects satellite cell proliferation and differentiation in vitro. Biochim Biophys Acta 1999, 1448:372-380.
- [12]Wang F, Chen TS, Xing D, Wang JJ, Wu YX: Measuring dynamics of caspase-3 activity in living cells using FRET technique during apoptosis induced by high fluence low-power laser irradiation. Lasers Surg Med 2005, 36:2-7.
- [13]Shefer G, Barash I, Oron U, Halevy O: Low-energy laser irradiation enhances de novo protein synthesis via its effects on translation-regulatory proteins in skeletal muscle myoblasts. Biochim Biophys Acta 2003, 1593:131-139.
- [14]Hawkins D, Houreld N, Abrahamse H: Low level laser therapy (LLLT) as an effective therapeutic modality for delayed wound healing. Ann NY Acad Sci 2005, 1056:486-493.
- [15]de Araujo CE, Ribeiro MS, Favaro R, Zezell DM, Zorn TM: Ultrastructural and autoradiographical analysis show a faster skin repair in He-Ne laser-treated wounds. J Photochem Photobiol B 2007, 86:87-96.
- [16]Zhang L, Xing D, Zhu D, Chen Q: Low-power laser irradiation inhibiting Abeta25-35-induced PC12 cell apoptosis via PKC activation. Cell Physiol Biochem 2008, 22:215-222.
- [17]Zhang H, Wu S, Xing D: Inhibition of Abeta(25–35)-induced cell apoptosis by Low-power-laser-irradiation (LPLI) through promoting Akt-dependent YAP cytoplasmic translocation. Cell Signal 2012, 24:224-232.
- [18]Stocker R, Keaney JF: Role of oxidative modifications in atherosclerosis. Physiol Rev 2004, 84:1381-1478.
- [19]Parsons SJ, Parsons JT: Src family kinases, key regulators of signal transduction. Oncogene 2004, 23:7906-7909.
- [20]Han C, Jin J, Xu S, Liu H, Li N, Cao X: Integrin CD11b negatively regulates TLR-triggered inflammatory responses by activating Syk and promoting degradation of MyD88 and TRIF via Cbl-b. Nat Immunol 2010, 11:734-742.
- [21]Zhang J, Xing D, Gao X: Low-power laser irradiation activates Src tyrosine kinase through reactive oxygen species-mediated signaling pathway. J Cell Physiol 2008, 217:518-528.
- [22]McDonald DR, Brunden KR, Landreth GE: Amyloid fibrils activate tyrosine kinase-dependent signaling and superoxide production in microglia. J Neurosci 1997, 17:2284-2294.
- [23]Saura J, Tusell JM, Serratosa J: High-yield isolation of murine microglia by mild trypsinization. Glia 2003, 44:183-189.
- [24]Gao X, Chen T, Xing D, Wang F, Pei Y, Wei X: Single cell analysis of PKC activation during proliferation and apoptosis induced by laser irradiation. J Cell Physiol 2006, 206:441-448.
- [25]Pan XD, Zhu YG, Lin N, Zhang J, Ye QY, Huang HP, Chen XC: Microglial phagocytosis induced by fibrillar beta-amyloid is attenuated by oligomeric beta-amyloid: implications for Alzheimer’s disease. Mol Neurodegener 2011, 6:45. BioMed Central Full Text
- [26]Kojima H, Nakatsubo N, Kikuchi K, Kawahara S, Kirino Y, Nagoshi H, Hirata Y, Nagano T: Detection and imaging of nitric oxide with novel fluorescent indicators: diaminofluoresceins. Anal Chem 1998, 70:2446-2453.
- [27]Page TH, Smolinska M, Gillespie J, Urbaniak AM, Foxwell BM: Tyrosine kinases and inflammatory signalling. Curr Mol Med 2009, 9:69-85.
- [28]Wortmann A, He Y, Christensen ME, Linn M, Lumley JW, Pollock PM, Waterhouse NJ, Hooper JD: Cellular settings mediating Src substrate switching between focal adhesion kinase (FAK) tyrosine 861 and CUB-domain containing protein 1 (CDCP1) tyrosine 734. J Biol Chem 2011, 286:42303-42315.
- [29]Blander JM, Medzhitov R: Regulation of phagosome maturation by signals from toll-like receptors. Science 2004, 304:1014-1018.
- [30]Joneson T, McDonough M, Bar-Sagi D, Van Aelst L: RAC regulation of actin polymerization and proliferation by a pathway distinct from Jun kinase. Science 1996, 274:1374-1376.
- [31]Albertinazzi C, Cattelino A, de Curtis I: Rac GTPases localize at sites of actin reorganization during dynamic remodeling of the cytoskeleton of normal embryonic fibroblasts. J Cell Sci 1999, 112:3821-3831.
- [32]Castellano F, Montcourrier P, Chavrier P: Membrane recruitment of Rac1 triggers phagocytosis. J Cell Sci 2000, 113:2955-2961.
- [33]Volling K, Thywissen A, Brakhage AA, Saluz HP: Phagocytosis of melanized Aspergillus conidia by macrophages exerts cytoprotective effects by sustained PI3K/Akt signalling. Cell Microbiol 2011, 13:1130-1148.
- [34]Koenigsknecht-Talboo J, Landreth GE: Microglial phagocytosis induced by fibrillar beta-amyloid and IgGs are differentially regulated by proinflammatory cytokines. J Neurosci 2005, 25:8240-8249.
- [35]Kutsuna H, Suzuki K, Kamata N, Kato T, Hato F, Mizuno K, Kobayashi H, Ishii M, Kitagawa S: Actin reorganization and morphological changes in human neutrophils stimulated by TNF, GM-CSF, and G-CSF: the role of MAP kinases. Am J Physiol Cell Physiol 2004, 286:C55-C64.
- [36]Neher JJ, Neniskyte U, Zhao JW, Bal-Price A, Tolkovsky AM, Brown GC: Inhibition of microglial phagocytosis is sufficient to prevent inflammatory neuronal death. J Immunol 2011, 186:4973-4983.
- [37]Walker DG, Link J, Lue LF, Dalsing-Hernandez JE, Boyes BE: Gene expression changes by amyloid beta peptide-stimulated human postmortem brain microglia identify activation of multiple inflammatory processes. J Leukoc Biol 2006, 79:596-610.
- [38]Yates SL, Burgess LH, Kocsis-Angle J, Antal JM, Dority MD, Embury PB, Piotrkowski AM, Brunden KR: Amyloid beta and amylin fibrils induce increases in proinflammatory cytokine and chemokine production by THP-1 cells and murine microglia. J Neurochem 2000, 74:1017-1025.
- [39]Herber DL, Maloney JL, Roth LM, Freeman MJ, Morgan D, Gordon MN: Diverse microglial responses after intrahippocampal administration of lipopolysaccharide. Glia 2006, 53:382-391.
- [40]Lee DC, Rizer J, Selenica ML, Reid P, Kraft C, Johnson A, Blair L, Gordon MN, Dickey CA, Morgan D: LPS- induced inflammation exacerbates phospho-tau pathology in rTg4510 mice. J Neuroinflammation 2010, 7:56. BioMed Central Full Text
- [41]Dean JM, Wang X, Kaindl AM, Gressens P, Fleiss B, Hagberg H, Mallard C: Microglial MyD88 signaling regulates acute neuronal toxicity of LPS-stimulated microglia in vitro. Brain Behav Immun 2010, 24:776-783.
- [42]Schindl A, Schindl M, Pernerstorfer-Schon H, Kerschan K, Knobler R, Schindl L: Diabetic neuropathic foot ulcer: successful treatment by low-intensity laser therapy. Dermatology 1999, 198:314-316.
- [43]Khuman J, Zhang J, Park J, Carroll JD, Donahue C, Whalen MJ: Low-level laser light therapy improves cognitive deficits and inhibits microglial activation after controlled cortical impact in mice. J Neurotrauma 2012, 29:408-417.
- [44]Naeser MA, Hamblin MR: Potential for transcranial laser or LED therapy to treat stroke, traumatic brain injury, and neurodegenerative disease. Photomed Laser Surg 2011, 29:443-446.
- [45]Chen AC, Huang YY, Sharma SK, Hamblin MR: Effects of 810-nm laser on murine bone-marrow-derived dendritic cells. Photomed Laser Surg 2011, 29:383-389.
- [46]Sharma SK, Kharkwal GB, Sajo M, Huang YY, De Taboada L, McCarthy T, Hamblin MR: Dose response effects of 810 nm laser light on mouse primary cortical neurons. Lasers Surg Med 2011, 43:851-859.
- [47]Hashmi JT, Huang YY, Osmani BZ, Sharma SK, Naeser MA, Hamblin MR: Role of low-level laser therapy in neurorehabilitation. PM R 2010, 2:S292-S305.
- [48]Anders JJ, Borke RC, Woolery SK, Van de Merwe WP: Low power laser irradiation alters the rate of regeneration of the rat facial nerve. Lasers Surg Med 1993, 13:72-82.
- [49]Yang X, Askarova S, Sheng W, Chen JK, Sun AY, Sun GY, Yao G, Lee JC: Low energy laser light (632.8 nm) suppresses amyloid-beta peptide-induced oxidative and inflammatory responses in astrocytes. Neuroscience 2010, 171:859-868.
- [50]Zhang L, Xing D, Gao X, Wu S: Low-power laser irradiation promotes cell proliferation by activating PI3K/Akt pathway. J Cell Physiol 2009, 219:553-562.
- [51]Xie Z, Wei M, Morgan TE, Fabrizio P, Han D, Finch CE, Longo VD: Peroxynitrite mediates neurotoxicity of amyloid beta-peptide1-42- and lipopolysaccharide-activated microglia. J Neurosci 2002, 22:3484-3492.
- [52]Matsui S, Tsujimoto Y, Matsushima K: Stimulatory effects of hydroxyl radical generation by Ga-Al-As laser irradiation on mineralization ability of human dental pulp cells. Biol Pharm Bull 2007, 30:27-31.
- [53]Lavi R, Shainberg A, Friedmann H, Shneyvays V, Rickover O, Eichler M, Kaplan D, Lubart R: Low energy visible light induces reactive oxygen species generation and stimulates an increase of intracellular calcium concentration in cardiac cells. J Biol Chem 2003, 278:40917-40922.
- [54]Kemble DJ, Sun G: Direct and specific inactivation of protein tyrosine kinases in the Src and FGFR families by reversible cysteine oxidation. Proc Natl Acad Sci USA 2009, 106:5070-5075.
- [55]Jiang K, Sun J, Cheng J, Djeu JY, Wei S, Sebti S: Akt mediates Ras downregulation of RhoB, a suppressor of transformation, invasion, and metastasis. Mol Cell Biol 2004, 24:5565-5576.
- [56]Qian Y, Corum L, Meng Q, Blenis J, Zheng JZ, Shi X, Flynn DC, Jiang BH: PI3K induced actin filament remodeling through Akt and p70S6K1: implication of essential role in cell migration. Am J Physiol Cell Physiol 2004, 286:C153-C163.
- [57]Sorenson CM, Sheibani N: Sustained activation of MAPK/ERKs signaling pathway in cystic kidneys from bcl-2 −/− mice. Am J Physiol Renal Physiol 2002, 283:F1085-F1090.
- [58]Thamilselvan V, Craig DH, Basson MD: FAK association with multiple signal proteins mediates pressure-induced colon cancer cell adhesion via a Src-dependent PI3K/Akt pathway. FASEB J 2007, 21:1730-1741.
- [59]Lipfert L, Haimovich B, Schaller MD, Cobb BS, Parsons JT, Brugge JS: Integrin-dependent phosphorylation and activation of the protein tyrosine kinase pp125FAK in platelets. J Cell Biol 1992, 119:905-912.
- [60]Clark EA, Shattil SJ, Ginsberg MH, Bolen J, Brugge JS: Regulation of the protein tyrosine kinase pp72syk by platelet agonists and the integrin alpha IIb beta 3. J Biol Chem 1994, 269:28859-28864.
- [61]Bongiorno-Borbone L, Onofri F, Giovedi S, Ferrari R, Girault JA, Benfenati F: The translocation of focal adhesion kinase in brain synaptosomes is regulated by phosphorylation and actin assembly. J Neurochem 2002, 81:1212-1222.
- [62]Chen HC, Appeddu PA, Isoda H, Guan JL: Phosphorylation of tyrosine 397 in focal adhesion kinase is required for binding phosphatidylinositol 3-kinase. J Biol Chem 1996, 271:26329-26334.
- [63]Akiyama H, McGeer PL: Brain microglia constitutively express beta-2 integrins. J Neuroimmunol 1990, 30:81-93.
- [64]Le Cabec V, Carreno S, Moisand A, Bordier C, Maridonneau-Parini I: Complement receptor 3 (CD11b/CD18) mediates type I and type II phagocytosis during nonopsonic and opsonic phagocytosis, respectively. J Immunol 2002, 169:2003-2009.
- [65]Zhang D, Hu X, Qian L, Chen SH, Zhou H, Wilson B, Miller DS, Hong JS: Microglial MAC1 receptor and PI3K are essential in mediating beta-amyloid peptide-induced microglial activation and subsequent neurotoxicity. J Neuroinflammation 2011, 8:3. BioMed Central Full Text
- [66]Roy A, Jana A, Yatish K, Freidt MB, Fung YK, Martinson JA, Pahan K: Reactive oxygen species up-regulate CD11b in microglia via nitric oxide: Implications for neurodegenerative diseases. Free Radic Biol Med 2008, 45:686-699.
- [67]Schlachetzki JC, Hüll M: Microglial activation in Alzheimer’s disease. Curr Alzheimer Res 2009, 6:554-563.
PDF