期刊论文详细信息
Clinical Epigenetics
CpG signalling, H2A.Z/H3 acetylation and microRNA-mediated deferred self-attenuation orchestrate foetal NOS3 expression
Andreas Christoph Jenke2  Stefan Wirth1  Patrick Philipp Weil1  Kai Oliver Hensel1  Valerie Orth1  Rhea Willems1  Sakeh Forcob1  Miriam Kanders1  Jan Postberg1 
[1] HELIOS Childrens Hospital, Centre for Biomedical Education and Research, Witten/Herdecke University, Wuppertal, Germany;Children’s Hospital, Helios Klinikum Wuppertal, Wuppertal, 42283, Germany
关键词: Intrauterine growth retardation;    Nitric oxide;    miRNA;    Placental perfusion;   
Others  :  1148148
DOI  :  10.1186/s13148-014-0042-4
 received in 2014-11-05, accepted in 2014-12-22,  发布年份 2015
PDF
【 摘 要 】

Background

An adverse intrauterine environment leads to permanent physiological changes including vascular tone regulation, potentially influencing the risk for adult vascular diseases. We therefore aimed to monitor responsive NOS3 expression in human umbilical artery endothelial cells (HUAEC) and to study the underlying epigenetic signatures involved in its regulation.

Results

NOS3 and STAT3 mRNA levels were elevated in HUAEC of patients who suffered from placental insufficiency. 5-hydroxymethylcytosine, H3K9ac and Histone 2A (H2A).Zac at the NOS3 transcription start site directly correlated with NOS3 mRNA levels. Concomitantly, we observed entangled histone acetylation patterns and NOS3 response upon hypoxic conditions in vitro. Knock-down of either NOS3 or STAT3 by RNAi provided evidence for a functional NOS3/STAT3 relationship. Moreover, we recognized massive turnover of Stat3 at a discrete binding site in the NOS3 promoter. Interestingly, induced hyperacetylation resulted in short-termed increase of NOS3 mRNA followed by deferred decrease indicating that NOS3 expression could become self-attenuated by co-expressed intronic 27 nt-ncRNA. Reporter assay results and phylogenetic analyses enabled us to propose a novel model for STAT3-3′-UTR targeting by this 27-nt-ncRNA.

Conclusions

An adverse intrauterine environment leads to adaptive changes of NOS3 expression. Apparently, a rapid NOS3 self-limiting response upon ectopic triggers co-exists with longer termed expression changes in response to placental insufficiency involving differential epigenetic signatures. Their persistence might contribute to impaired vascular endothelial response and consequently increase the risk of cardiovascular disease later in life.

【 授权许可】

   
2015 Postberg et al.; licensee Biomed Central.

【 预 览 】
附件列表
Files Size Format View
20150404094517944.pdf 2176KB PDF download
Figure 7. 78KB Image download
Figure 6. 29KB Image download
Figure 5. 34KB Image download
Figure 4. 23KB Image download
Figure 3. 147KB Image download
Figure 2. 69KB Image download
Figure 1. 45KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

Figure 7.

【 参考文献 】
  • [1]Sartori C, Allemann Y, Trueb L, Delabays A, Nicod P, Scherrer U: Augmented vasoreactivity in adult life associated with perinatal vascular insult. Lancet 1999, 353(9171):2205-7.
  • [2]Suzuki MM, Bird A: DNA methylation landscapes: provocative insights from epigenomics. Nat Rev Genet 2008, 9(6):465-76.
  • [3]Berdasco M, Esteller M: Aberrant epigenetic landscape in cancer: how cellular identity goes awry. Dev Cell 2010, 19(5):698-711.
  • [4]Doi A, Park IH, Wen B, Murakami P, Aryee MJ, Irizarry R, et al.: Differential methylation of tissue- and cancer-specific CpG island shores distinguishes human induced pluripotent stem cells, embryonic stem cells and fibroblasts. Nat Genet 2009, 41(12):1350-3.
  • [5]Bogdanovic O, Veenstra GJ: DNA methylation and methyl-CpG binding proteins: developmental requirements and function. Chromosoma 2009, 118(5):549-65.
  • [6]Tahiliani M, Koh KP, Shen Y, Pastor WA, Bandukwala H, Brudno Y, et al.: Conversion of 5-methylcytosine to 5-hydroxymethylcytosine in mammalian DNA by MLL partner TET1. Science 2009, 324(5929):930-5.
  • [7]Ito S, D’Alessio AC, Taranova OV, Hong K, Sowers LC, Zhang Y: Role of Tet proteins in 5mC to 5hmC conversion, ES-cell self-renewal and inner cell mass specification. Nature 2010, 466(7310):1129-33.
  • [8]Kriaucionis S, Heintz N: The nuclear DNA base 5-hydroxymethylcytosine is present in Purkinje neurons and the brain. Science 2009, 324(5929):929-30.
  • [9]Bannister AJ, Kouzarides T: Regulation of chromatin by histone modifications. Cell Res 2011, 21(3):381-95.
  • [10]Chalubinski KM, Repa A, Stammler-Safar M, Ott J: Impact of Doppler sonography on intrauterine management and neonatal outcome in preterm fetuses with intrauterine growth restriction. Ultrasound Obstet Gynecol 2012, 39(3):293-8.
  • [11]Coumans AB, Garnier Y, Supcun S, Jensen A, Hasaart TH, Berger R: The role of nitric oxide on fetal cardiovascular control during normoxia and acute hypoxia in 0.75 gestation sheep. J Soc Gynecol Investig 2003, 10(5):275-82.
  • [12]Gardner DS, Powlson AS, Giussani DA: An in vivo nitric oxide clamp to investigate the influence of nitric oxide on continuous umbilical blood flow during acute hypoxaemia in the sheep fetus. J Physiol 2001, 537(Pt 2):587-96.
  • [13]Hampl V, Bibova J, Stranak Z, Wu X, Michelakis ED, Hashimoto K, et al.: Hypoxic fetoplacental vasoconstriction in humans is mediated by potassium channel inhibition. Am J Physiol Heart Circ Physiol 2002, 283(6):H2440-9.
  • [14]Giannubilo SR, Menegazzi M, Tedeschi E, Bezzeccheri V, Suzuki H, Tranquilli AL: Doppler analysis and placental nitric oxide synthase expression during fetal growth restriction. J Matern Fetal Neonatal Med 2008, 21(9):617-22.
  • [15]Casanello P, Krause B, Torres E, Gallardo V, Gonzalez M, Prieto C, et al.: Reduced l-arginine transport and nitric oxide synthesis in human umbilical vein endothelial cells from intrauterine growth restriction pregnancies is not further altered by hypoxia. Placenta 2009, 30(7):625-33.
  • [16]Krause BJ, Prieto CP, Munoz-Urrutia E, San MS, Sobrevia L, Casanello P: Role of arginase-2 and eNOS in the differential vascular reactivity and hypoxia-induced endothelial response in umbilical arteries and veins. Placenta 2012, 33(5):360-6.
  • [17]Fulton D, Gratton JP, McCabe TJ, Fontana J, Fujio Y, Walsh K, et al.: Regulation of endothelium-derived nitric oxide production by the protein kinase Akt. Nature 1999, 399(6736):597-601.
  • [18]Wu KK: Regulation of endothelial nitric oxide synthase activity and gene expression. Ann N Y Acad Sci 2002, 962:122-30.
  • [19]Lai PF, Mohamed F, Monge JC, Stewart DJ: Downregulation of eNOS mRNA expression by TNFalpha: identification and functional characterization of RNA-protein interactions in the 3′UTR. Cardiovasc Res 2003, 59(1):160-8.
  • [20]Fish JE, Matouk CC, Rachlis A, Lin S, Tai SC, D’Abreo C, et al.: The expression of endothelial nitric-oxide synthase is controlled by a cell-specific histone code. J Biol Chem 2005, 280(26):24824-38.
  • [21]Fish JE, Yan MS, Matouk CC, St BR, Ho JJ, Gavryushova A, et al.: Hypoxic repression of endothelial nitric-oxide synthase transcription is coupled with eviction of promoter histones. J Biol Chem 2010, 285(2):810-26.
  • [22]Harvey NC, Lillycrop KA, Garratt E, Sheppard A, McLean C, Burdge G, et al.: Evaluation of methylation status of the eNOS promoter at birth in relation to childhood bone mineral content. Calcif Tissue Int 2012, 90(2):120-7.
  • [23]Yan L, Hao H, Elton TS, Liu Z, Ou H: Intronic microRNA suppresses endothelial nitric oxide synthase expression and endothelial cell proliferation via inhibition of STAT3 signaling. Mol Cell Biochem 2011, 357(1–2):9-19.
  • [24]Spoto B, Benedetto FA, Testa A, Tripepi G, Mallamaci F, Maas R, et al.: An additive effect of endothelial nitric oxide synthase gene polymorphisms contributes to the severity of atherosclerosis in patients on dialysis. Am J Hypertens 2007, 20(7):758-63.
  • [25]Fuks F, Hurd PJ, Deplus R, Kouzarides T: The DNA methyltransferases associate with HP1 and the SUV39H1 histone methyltransferase. Nucleic Acids Res 2003, 31(9):2305-12.
  • [26]Jones PL, Veenstra GJ, Wade PA, Vermaak D, Kass SU, Landsberger N, et al.: Methylated DNA and MeCP2 recruit histone deacetylase to repress transcription. Nat Genet 1998, 19(2):187-91.
  • [27]Nan X, Ng HH, Johnson CA, Laherty CD, Turner BM, Eisenman RN, et al.: Transcriptional repression by the methyl-CpG-binding protein MeCP2 involves a histone deacetylase complex. Nature 1998, 393(6683):386-9.
  • [28]Fischle W, Tseng BS, Dormann HL, Ueberheide BM, Garcia BA, Shabanowitz J, et al.: Regulation of HP1-chromatin binding by histone H3 methylation and phosphorylation. Nature 2005, 438(7071):1116-22.
  • [29]Rossig L, Li H, Fisslthaler B, Urbich C, Fleming I, Forstermann U, et al.: Inhibitors of histone deacetylation downregulate the expression of endothelial nitric oxide synthase and compromise endothelial cell function in vasorelaxation and angiogenesis. Circ Res 2002, 91(9):837-44.
  • [30]Maritano D, Sugrue ML, Tininini S, Dewilde S, Strobl B, Fu X, et al.: The STAT3 isoforms alpha and beta have unique and specific functions. Nat Immunol 2004, 5(4):401-9.
  • [31]Saura M, Zaragoza C, Bao C, Herranz B, Rodriguez-Puyol M, Lowenstein CJ: Stat3 mediates interleukin-6 [correction of interelukin-6] inhibition of human endothelial nitric-oxide synthase expression. J Biol Chem 2006, 281(40):30057-62.
  • [32]Bard JD, Gelebart P, Amin HM, Young LC, Ma Y, Lai R: Signal transducer and activator of transcription 3 is a transcriptional factor regulating the gene expression of SALL4. FASEB J 2009, 23(5):1405-14.
  • [33]Zhang MX, Zhang C, Shen YH, Wang J, Li XN, Zhang Y, et al.: Biogenesis of short intronic repeat 27-nucleotide small RNA from endothelial nitric-oxide synthase gene. J Biol Chem 2008, 283(21):14685-93.
  • [34]Zuker M: Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res 2003, 31(13):3406-15.
  • [35]Chong MM, Zhang G, Cheloufi S, Neubert TA, Hannon GJ, Littman DR: Canonical and alternate functions of the microRNA biogenesis machinery. Genes Dev 2010, 24(17):1951-60.
  • [36]Zhang MX, Ou H, Shen YH, Wang J, Wang J, Coselli J, et al.: Regulation of endothelial nitric oxide synthase by small RNA. Proc Natl Acad Sci U S A 2005, 102(47):16967-72.
  • [37]Brennecke J, Stark A, Russell RB, Cohen SM: Principles of microRNA-target recognition. PLoS Biol 2005, 3(3):e85.
  • [38]Wee LM, Flores-Jasso CF, Salomon WE, Zamore PD: Argonaute divides its RNA guide into domains with distinct functions and RNA-binding properties. Cell 2012, 151(5):1055-67.
  • [39]Perelman P, Johnson WE, Roos C, Seuanez HN, Horvath JE, Moreira MA, et al.: A molecular phylogeny of living primates. PLoS Genet 2011, 7(3):e1001342.
  • [40]Kimura T, Yokoyama T, Matsumura Y, Yoshiike N, Date C, Muramatsu M, et al.: NOS3 genotype-dependent correlation between blood pressure and physical activity. Hypertension 2003, 41(2):355-60.
  • [41]Chan Y, Fish JE, D’Abreo C, Lin S, Robb GB, Teichert AM, et al.: The cell-specific expression of endothelial nitric-oxide synthase: a role for DNA methylation. J Biol Chem 2004, 279(33):35087-100.
  • [42]Kouzarides T: Chromatin modifications and their function. Cell 2007, 128(4):693-705.
  • [43]Hirota T, Lipp JJ, Toh BH, Peters JM: Histone H3 serine 10 phosphorylation by Aurora B causes HP1 dissociation from heterochromatin. Nature 2005, 438(7071):1176-80.
  • [44]Kurdistani SK, Tavazoie S, Grunstein M: Mapping global histone acetylation patterns to gene expression. Cell 2004, 117(6):721-33.
  • [45]Sud N, Kumar S, Wedgwood S, Black SM: Modulation of PKCdelta signaling alters the shear stress-mediated increases in endothelial nitric oxide synthase transcription: role of STAT3. Am J Physiol Lung Cell Mol Physiol 2009, 296(3):L519-26.
  • [46]Godfrey KM, Sheppard A, Gluckman PD, Lillycrop KA, Burdge GC, McLean C, et al.: Epigenetic gene promoter methylation at birth is associated with child’s later adiposity. Diabetes 2011, 60(5):1528-34.
  • [47]Law CM, Shiell AW: Is blood pressure inversely related to birth weight? The strength of evidence from a systematic review of the literature. J Hypertens 1996, 14(8):935-41.
  • [48]Reitter A, Hajduk B, Geka F, Buxmann H, Schlosser R, Louwen F: Doppler studies of gestational diabetes in the third trimester. Ultraschall Med 2011, 32(2):E162-8.
  • [49]Grunewald C, Divon M, Lunell NO: Doppler velocimetry in last trimester pregnancy complicated by insulin-dependent diabetes mellitus. Acta Obstet Gynecol Scand 1996, 75(9):804-8.
  • [50]Turan OM, Turan S, Gungor S, Berg C, Moyano D, Gembruch U, et al.: Progression of Doppler abnormalities in intrauterine growth restriction. Ultrasound Obstet Gynecol 2008, 32(2):160-7.
  • [51]Gimbrone MA Jr, Cotran RS, Folkman J: Human vascular endothelial cells in culture. Growth and DNA synthesis. J Cell Biol 1974, 60(3):673-84.
  • [52]Livak KJ, Schmittgen TD: Analysis of relative gene expression data using real-time quantitative PCR and the 2(−Delta Delta C(T)) Method. Methods 2001, 25(4):402-8.
  文献评价指标  
  下载次数:4次 浏览次数:4次