期刊论文详细信息
Journal of Hematology & Oncology
Alpha-enolase promotes cell glycolysis, growth, migration, and invasion in non-small cell lung cancer through FAK-mediated PI3K/AKT pathway
Xin Song1  Zhen Liu4  Wei-Yi Fang2  Xiao-Jie Deng2  Li-Bo Li3  Rong Li3  Rong-Cheng Luo3  Yi-Yu Chen2  Xiao-Li Yu2  Yan Zhen2  Meng-Yang Zhao2  Rui-Lei Li1  Su-Wei Dong2  Hong-Ying Qu3  Sheng-Ni Hua2  Yue Fan2  Yan Liu2  Qiao-Fen Fu2 
[1] Department of Cancer Biotherapy Center, Third Affiliated Hospital of Kunming Medical University (Tumor Hospital of Yunnan Province), Kunming, Yunnan, People’s Republic China;Cancer Research Institute of Southern Medical University, Guangzhou, Guangdong, People’s Republic China;Cancer Center, Traditional Chinese Medicine-Integrated Hospital of Southern Medical University, Guangzhou, Guangdong, People’s Republic China;Department of Pathology, Basic School of Guangzhou Medical University, Guangzhou, Guangdong, People’s Republic China
关键词: EMT;    FAK/PI3K/AKT;    Cell proliferation;    Glycolysis;    NSCLC;    ENO1;   
Others  :  1137537
DOI  :  10.1186/s13045-015-0117-5
 received in 2014-10-15, accepted in 2015-02-09,  发布年份 2015
PDF
【 摘 要 】

Background

During tumor formation and expansion, increasing glucose metabolism is necessary for unrestricted growth of tumor cells. Expression of key glycolytic enzyme alpha-enolase (ENO1) is controversial and its modulatory mechanisms are still unclear in non-small cell lung cancer (NSCLC).

Methods

The expression of ENO1 was examined in NSCLC and non-cancerous lung tissues, NSCLC cell lines, and immortalized human bronchial epithelial cell (HBE) by quantitative real-time reverse transcription PCR (qRT-PCR), immunohistochemistry, and Western blot, respectively. The effects and modulatory mechanisms of ENO1 on cell glycolysis, growth, migration, invasion, and in vivo tumorigenesis and metastasis in nude mice were also analyzed.

Results

ENO1 expression was increased in NSCLC tissues in comparison to non-cancerous lung tissues. Similarly, NSCLC cell lines A549 and SPCA-1 also express higher ENO1 than HBE cell line in both mRNA and protein levels. Overexpressed ENO1 significantly elevated NSCLC cell glycolysis, proliferation, clone formation, migration, and invasion in vitro, as well as tumorigenesis and metastasis in vivo by regulating the expression of glycolysis, cell cycle, and epithelial-mesenchymal transition (EMT)-associated genes. Conversely, ENO1 knockdown reversed these effects. More importantly, our further study revealed that stably upregulated ENO1 activated FAK/PI3K/AKT and its downstream signals to regulate the glycolysis, cell cycle, and EMT-associated genes.

Conclusion

This study showed that ENO1 is responsible for NSCLC proliferation and metastasis; thus, ENO1 might serve as a potential molecular therapeutic target for NSCLC treatment.

【 授权许可】

   
2015 Fu et al.; licensee BioMed Central.

【 预 览 】
附件列表
Files Size Format View
20150317092719702.pdf 1988KB PDF download
Figure 7. 59KB Image download
Figure 6. 222KB Image download
Figure 5. 61KB Image download
Figure 4. 170KB Image download
Figure 3. 85KB Image download
Figure 2. 62KB Image download
Figure 1. 76KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

Figure 7.

【 参考文献 】
  • [1]Yuan X, Wu H, Han N, Xu H, Chu Q, Yu S, et al.: Notch signaling and EMT in non-small cell lung cancer: biological significance and therapeutic application. J Hematol Oncol 2014, 7(1):87. BioMed Central Full Text
  • [2]Molina JR, Yang P, Cassivi SD, Schild SE, Adjei AA: Non-small cell lung cancer: epidemiology, risk factors, treatment, and survivorship. Mayo Clin Proc 2008, 83(5):584-94.
  • [3]Gomez-Casal R, Bhattacharya C, Ganesh N, Bailey L, Basse P, Gibson M, et al.: Non-small cell lung cancer cells survived ionizing radiation treatment display cancer stem cell and epithelial-mesenchymal transition phenotypes. Mol Cancer 2013, 12(1):94. BioMed Central Full Text
  • [4]Singh S, Trevino J, Bora-Singhal N, Coppola D, Haura E, Altiok S, et al.: EGFR/Src/Akt signaling modulates Sox2 expression and self-renewal of stem-like side-population cells in non-small cell lung cancer. Mol Cancer 2012, 11:73. BioMed Central Full Text
  • [5]Serrano D, Bleau AM, Fernandez-Garcia I, Fernandez-Marcelo T, Iniesta P, Ortiz-de-Solorzano C, et al.: Inhibition of telomerase activity preferentially targets aldehyde dehydrogenase-positive cancer stem-like cells in lung cancer. Mol Cancer 2011, 10:96. BioMed Central Full Text
  • [6]Jin S, DiPaola RS, Mathew R, White E: Metabolic catastrophe as a means to cancer cell death. J Cell Sci 2007, 120(Pt 3):379-83.
  • [7]Diaz-Ramos A, Roig-Borrellas A, Garcia-Melero A, Lopez-Alemany R: Alpha-enolase, a multifunctional protein: its role on pathophysiological situations. J Biomed Biotechnol 2012, 2012:156795.
  • [8]Merkulova T, Dehaupas M, Nevers MC, Creminon C, Alameddine H, Keller A: Differential modulation of alpha, beta and gamma enolase isoforms in regenerating mouse skeletal muscle. Eur J Biochem 2000, 267(12):3735-43.
  • [9]Feo S, Arcuri D, Piddini E, Passantino R, Giallongo A: ENO1 gene product binds to the c-Myc promoter and acts as a transcriptional repressor: relationship with Myc promoter-binding protein 1 (MBP-1). Febs Lett 2000, 473(1):47-52.
  • [10]Lung J, Liu KJ, Chang JY, Leu SJ, Shih NY: MBP-1 is efficiently encoded by an alternative transcript of the ENO1 gene but post-translationally regulated by proteasome-dependent protein turnover. FEBS J 2010, 277(20):4308-21.
  • [11]Subramanian A, Miller DM: Structural analysis of alpha-enolase mapping the functional domains involved in down-regulation of the c-Myc protooncogene. J Biol Chem 2000, 275(8):5958-65.
  • [12]Altenberg B, Greulich KO: Genes of glycolysis are ubiquitously overexpressed in 24 cancer classes. Genomics 2004, 84(6):1014-20.
  • [13]Chang GC, Liu KJ, Hsieh CL, Hu TS, Charoenfuprasert S, Liu HK, et al.: Identification of alpha-enolase as an autoantigen in lung cancer: its overexpression is associated with clinical outcomes. Clin Cancer Res 2006, 12(19):5746-54.
  • [14]He P, Naka T, Serada S, Fujimoto M, Tanaka T, Hashimoto S, et al.: Proteomics-based identification of alpha-enolase as a tumor antigen in non-small lung cancer. Cancer Sci 2007, 98(8):1234-40.
  • [15]Chang YS, Wu W, Walsh G, Hong WK, Mao L: Enolase-alpha is frequently down-regulated in non-small cell lung cancer and predicts aggressive biological behavior. Clin Cancer Res 2003, 9(10 Pt 1):3641-4.
  • [16]Zhou XZYHN: α-Enolase (ENO1) inhibits epithelial-mesenchymal transition in the A549 cell line by suppressing ERK1/2 phosphorylation. Zhongguo Fei Ai Za Zhi 2013, 05:221-6.
  • [17]Song Y, Luo Q, Long H, Hu Z, Que T, Zhang X, et al.: Alpha-enolase as a potential cancer prognostic marker promotes cell growth, migration, and invasion in glioma. Mol Cancer 2014, 13:65. BioMed Central Full Text
  • [18]Zhen Y, Ye Y, Yu X, Mai C, Zhou Y, Chen Y, et al.: Reduced CTGF expression promotes cell growth, migration, and invasion in nasopharyngeal carcinoma. PLoS One 2013, 8(6):e64976.
  • [19]Dong X, Yu LG, Sun R, Cheng YN, Cao H, Yang KM, et al.: Inhibition of PTEN expression and activity by angiotensin II induces proliferation and migration of vascular smooth muscle cells. J Cell Biochem 2013, 114(1):174-82.
  • [20]Beckner ME, Fellows-Mayle W, Zhang Z, Agostino NR, Kant JA, Day BW, et al.: Identification of ATP citrate lyase as a positive regulator of glycolytic function in glioblastomas. Int J Cancer 2010, 126(10):2282-95.
  • [21]Tsai ST, Chien IH, Shen WH, Kuo YZ, Jin YT, Wong TY, et al.: ENO1, a potential prognostic head and neck cancer marker, promotes transformation partly via chemokine CCL20 induction. Eur J Cancer 2010, 46(9):1712-23.
  • [22]Cappello P, Rolla S, Chiarle R, Principe M, Cavallo F, Perconti G, et al.: Vaccination with ENO1 DNA prolongs survival of genetically engineered mice with pancreatic cancer. Gastroenterology 2013, 144(5):1098-106.
  • [23]Yu L, Shi J, Cheng S, Zhu Y, Zhao X, Yang K, et al.: Estrogen promotes prostate cancer cell migration via paracrine release of ENO1 from stromal cells. Mol Endocrinol 2012, 26(9):1521-30.
  • [24]Ho JA, Chang HC, Shih NY, Wu LC, Chang YF, Chen CC, et al.: Diagnostic detection of human lung cancer-associated antigen using a gold nanoparticle-based electrochemical immunosensor. Anal Chem 2010, 82(14):5944-50.
  • [25]Chu PY, Hsu NC, Liao AT, Shih NY, Hou MF, Liu CH: Overexpression of alpha-enolase correlates with poor survival in canine mammary carcinoma. BMC Vet Res 2011, 7:62. BioMed Central Full Text
  • [26]Trojanowicz B, Sekulla C, Lorenz K, Kohrle J, Finke R, Dralle H, et al.: Proteomic approach reveals novel targets for retinoic acid-mediated therapy of thyroid carcinoma. Mol Cell Endocrinol 2010, 325(1–2):110-7.
  • [27]Yonglitthipagon P, Pairojkul C, Bhudhisawasdi V, Mulvenna J, Loukas A, Sripa B: Proteomics-based identification of alpha-enolase as a potential prognostic marker in cholangiocarcinoma. Clin Biochem 2012, 45(10–11):827-34.
  • [28]Leal MF, Chung J, Calcagno DQ, Assumpcao PP, Demachki S, Da SI, et al.: Differential proteomic analysis of noncardia gastric cancer from individuals of northern Brazil. PLoS One 2012, 7(7):e42255.
  • [29]Wygrecka M, Marsh LM, Morty RE, Henneke I, Guenther A, Lohmeyer J, et al.: Enolase-1 promotes plasminogen-mediated recruitment of monocytes to the acutely inflamed lung. Blood 2009, 113(22):5588-98.
  • [30]Hamaguchi T, Iizuka N, Tsunedomi R, Hamamoto Y, Miyamoto T, Iida M, et al.: Glycolysis module activated by hypoxia-inducible factor 1alpha is related to the aggressive phenotype of hepatocellular carcinoma. Int J Oncol 2008, 33(4):725-31.
  • [31]Yoshida A, Okamoto N, Tozawa-Ono A, Koizumi H, Kiguchi K, Ishizuka B, et al.: Proteomic analysis of differential protein expression by brain metastases of gynecological malignancies. Hum Cell 2013, 26(2):56-66.
  • [32]Liu Z, Chen C, Yang H, Zhang Y, Long J, Long X, et al.: Proteomic features of potential tumor suppressor NESG1 in nasopharyngeal carcinoma. Proteomics 2012, 12(22):3416-25.
  • [33]Yan GR, Xu SH, Tan ZL, Yin XF, He QY: Proteomics characterization of gastrokine 1-induced growth inhibition of gastric cancer cells. Proteomics 2011, 11(18):3657-64.
  • [34]Capello M, Ferri-Borgogno S, Cappello P, Novelli F: Alpha-enolase: a promising therapeutic and diagnostic tumor target. FEBS J 2011, 278(7):1064-74.
  • [35]Han K, Xu X, Chen G, Zeng Y, Zhu J, Du X, et al.: Identification of a promising PI3K inhibitor for the treatment of multiple myeloma through the structural optimization. J Hematol Oncol 2014, 7(1):9. BioMed Central Full Text
  • [36]Akinleye A, Avvaru P, Furqan M, Song Y, Liu D: Phosphatidylinositol 3-kinase (PI3K) inhibitors as cancer therapeutics. J Hematol Oncol 2013, 6(1):88. BioMed Central Full Text
  • [37]Chang L, Graham PH, Hao J, Bucci J, Cozzi PJ, Kearsley JH, et al. Emerging roles of radioresistance in prostate cancer metastasis and radiation therapy. Cancer Metastasis Rev 2014.
  • [38]Wallace DC: Mitochondria and cancer: Warburg addressed. Cold Spring Harb Symp Quant Biol 2005, 70:363-74.
  • [39]Xiao L, Hu ZY, Dong X, Tan Z, Li W, Tang M, et al.: Targeting Epstein-Barr virus oncoprotein LMP1-mediated glycolysis sensitizes nasopharyngeal carcinoma to radiation therapy. Oncogene 2014, 33(37):4568-78.
  • [40]Zhen Y, Liu Z, Yang H, Yu X, Wu Q, Hua S, et al.: Tumor suppressor PDCD4 modulates miR-184-mediated direct suppression of c-Myc and BCL2 blocking cell growth and survival in nasopharyngeal carcinoma. Cell Death Dis 2013, 4:e872.
  • [41]Shen HJ, Sun YH, Zhang SJ, Jiang JX, Dong XW, Jia YL, et al. Cigarette smoke-induced alveolar epithelial-mesenchymal transition is mediated by Rac1 activation. Biochim Biophys Acta 2014.
  • [42]Shim H, Dolde C, Lewis BC, Wu CS, Dang G, Jungmann RA, et al.: c-Myc transactivation of LDH-A: implications for tumor metabolism and growth. Proc Natl Acad Sci U S A 1997, 94(13):6658-63.
  • [43]Chen Y, Zhu X, Zhang X, Liu B, Huang L: Nanoparticles modified with tumor-targeting scFv deliver siRNA and miRNA for cancer therapy. Mol Ther 2010, 18(9):1650-6.
  • [44]Liu Z, Li L, Yang Z, Luo W, Li X, Yang H, et al.: Increased expression of MMP9 is correlated with poor prognosis of nasopharyngeal carcinoma. BMC Cancer 2010, 10:270. BioMed Central Full Text
  • [45]Tu L, Liu Z, He X, He Y, Yang H, Jiang Q, et al.: Over-expression of eukaryotic translation initiation factor 4 gamma 1 correlates with tumor progression and poor prognosis in nasopharyngeal carcinoma. Mol Cancer 2010, 9:78. BioMed Central Full Text
  • [46]Wang H, Wu Q, Liu Z, Luo X, Fan Y, Liu Y, et al.: Downregulation of FAP suppresses cell proliferation and metastasis through PTEN/PI3K/AKT and Ras-ERK signaling in oral squamous cell carcinoma. Cell Death Dis 2014, 5:e1155.
  • [47]Alajez NM, Shi W, Hui AB, Bruce J, Lenarduzzi M, Ito E, et al.: Enhancer of Zeste homolog 2 (EZH2) is overexpressed in recurrent nasopharyngeal carcinoma and is regulated by miR-26a, miR-101, and miR-98. Cell Death Dis 2010, 1:e85.
  • [48]Reitman ZJ, Jin G, Karoly ED, Spasojevic I, Yang J, Kinzler KW, et al.: Profiling the effects of isocitrate dehydrogenase 1 and 2 mutations on the cellular metabolome. Proc Natl Acad Sci U S A 2011, 108(8):3270-5.
  文献评价指标  
  下载次数:52次 浏览次数:6次