| BMC Veterinary Research | |
| Reduction of porcine circovirus type 2 (PCV2) viremia by a reformulated inactivated chimeric PCV1-2 vaccine-induced humoral and cellular immunity after experimental PCV2 challenge | |
| Chanhee Chae1  Changhoon Park1  Kiwon Han1  Yeonsu Oh1  Hwi Won Seo1  | |
| [1] College of Veterinary Medicine, Department of Veterinary Pathology, Seoul National University, 599 Gwanak-ro, Gwanak-gu, Seoul, 151–742, Republic of Korea | |
| 关键词: Porcine circovirus vaccine; Porcine circovirus type 2; Porcine circovirus-associated disease; Humoral and cellular immunity; Efficacy; Chimeric PCV1-2 vaccine; | |
| Others : 1119693 DOI : 10.1186/1746-6148-8-194 |
|
| received in 2012-07-02, accepted in 2012-10-17, 发布年份 2012 | |
PDF
|
|
【 摘 要 】
Background
The objective of the present study was to elucidate the humoral and cellular immune response mechanisms by which a reformulated inactivated chimeric PCV1-2 vaccine reduces the PCV2 viremia. Forty PCV2 seronegative 3-week-old pigs were randomly divided into the following four groups: vaccinated challenged (T01), vaccinated non-challenged (T02), non-vaccinated challenged (T03), and non-vaccinated non-challenged (T04) animals. The pigs in groups T01 and T02 were immunized with a reformulated inactivated chimeric PCV1-2 vaccine (Fostera™ PCV; Pfizer Animal Health) administered as a 2.0 ml dose at 21 days of age. At 35 days of age (0 days post-challenge), the pigs in groups T01 and T03 were inoculated intranasally with 2 ml each of PCV2b.
Results
A reduction of PCV2 viremia coincided with the appearance of both PCV2-specific neutralizing antibodies (NA) and interferon-γ-secreting cells (IFN-γ-SCs) in the vaccinated animals. However, the presence of anti-PCV2 IgG antibodies did not correlate with the reduction of PCV2 viremia. Lymphocyte subset analysis indicated that the numbers of CD3+ and CD4+ cells increased in vaccinated animals but the numbers of CD4+ cells decreased transiently in non-vaccinated animals. The observation of a delayed type hypersensitivity response in only the vaccinated animals also supports a CD4+ cell-associated protective cellular immune response induced by the reformulated inactivated chimeric PCV1-2 vaccine.
Conclusions
The induction of PCV2-specific NA and IFN-γ-SCs, and CD4+ cells by the reformulated inactivated chimeric PCV1-2 vaccine is the important protective immune response leading to reduction of the PCV2 viremia and control of the PCV2 infection. To our knowledge this is the first demonstration of protective humoral and cellular immunity induced by the reformulated inactivated chimeric PCV1-2 vaccine and its effect on reduction of PCV2 viremia by vaccination.
【 授权许可】
2012 Seo et al.; licensee BioMed Central Ltd.
【 预 览 】
| Files | Size | Format | View |
|---|---|---|---|
| 20150208102359549.pdf | 962KB | ||
| Figure 5. | 59KB | Image | |
| Figure 4. | 247KB | Image | |
| Figure 3. | 51KB | Image | |
| Figure 2. | 51KB | Image | |
| Figure 1. | 52KB | Image |
【 图 表 】
Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
【 参考文献 】
- [1]Chae C: Commercial porcine circovirus type 2 vaccines: Efficacy and clinical application. Vet Jin press
- [2]Chae C: A review of porcine circovirus 2-associated syndromes and diseases. Vet J 2005, 169:326-336.
- [3]Chae C: Postweaning multisystemic wasting syndrome: a review of aetiology, diagnosis and pathology. Vet J 2004, 168:41-49.
- [4]Fenaux M, Opriessnig T, Halbur PG, Elvinger F, Meng XJ: A chimeric porcine circovirus (PCV) with the immunogenic capsid gene of the pathogenic PCV type 2 (PCV2) cloned into the genomic backbone of the nonpathogenic PCV1 induces protective immunity against PCV2 infection in pigs. J Virol 2004, 78:6297-6303.
- [5]Gagnon CA, Music N, Fontaine G, Tremblay D, Harel J: Emergence of a new type of porcine circovirus in swine (PCV): A type 1 and type 2 PCV recombinant. Vet Microbiol 2010, 144:18-23.
- [6]Meerts P, van Gucht S, Cox E, Vandebosch A, Nauwynck HJ: Correlation between type of adaptive immune response against porcine circovirus type 2 and level of virus replication. Viral Immunol 2005, 18:333-341.
- [7]Meerts P, Misinzo G, Lefebvre D, Nielsen J, Botner A, Kristensen CS, Nauwynck H: Correlation between the presence of neutralizing antibodies against porcine circovirus 2 (PCV2) and protection against replication of the virus and development of PCV2-associated disease. BMC Vet Res 2006, 2:6-16. BioMed Central Full Text
- [8]Fort M, Olvera A, Sibila M, Segalés J, Mateu E: Detection of neutralizing antibodies in postweaning multisystemic wasting syndrome (PMWS)-affected and non-PMWS-affected pigs. Vet Microbiol 2007, 125:244-255.
- [9]Fort M, Fernandes LT, Nofrarias M, Diaz I, Sibila M, Pujols J, Mateu E, Segalés J: Development of cell-mediated immunity to porcine circovirus type 2 (PCV2) in caesarean-derived, colostrum-deprived piglets. Vet Immunol Immunopathol 2009, 129:101-107.
- [10]Fort M, Sibila M, Perez-Martin E, Nofrarias M, Mateu E, Segalés J: One dose of a porcine circovirus 2 (PCV2) sub-unit vaccine administered to 3-week-old conventional piglets elicits cell-mediated immunity and significantly reduces PCV2 viremia in an experimental model. Vaccine 2009, 27:4031-4037.
- [11]Oh Y, Seo HW, Han K, Park C, Chae C: Protective effect of the maternally derived porcine circovirus type 2(PCV2)-specific cellular immune response in piglets by dam vaccination against PCV2 challenge. J Gen Virol 2012, 93:1556-1562.
- [12]Opriessnig T, Patterson AR, Madson DM, Pal N, Halbur PG: Comparison of efficacy of commercial one dose and two dose PCV2 vaccines using a mixed PRRSV-PCV2-SIV clinical infection model 2–3-months post vaccination. Vaccine 2009, 27:1002-1007.
- [13]Shen HG, Beach NM, Huang YW, Halbur PG, Meng XJ, Opriessnig T: Comparison of commercial and experimental porcine circovirus type 2 (PCV2) vaccines using a triple challenge with PCV2, porcine reproductive and respiratory syndrome virus (PRRSV), and porcine parvovirus (PPV). Vaccine 2010, 43:5960-5966.
- [14]Gagnon CA, del Castillo JR, Music N, Fontaine G, Harel J, Tremblay D: Development and use of a multiplex real-time quantitative polymerase chain reaction assay for detection and differentiation of porcine circovirus-2 genotypes 2a and 2b in an epidemiological survey. J Vet Diagn Invest 2008, 20:545-558.
- [15]Kim D, Kim CH, Han K, Seo HW, Oh Y, Park C, Kang I, Chae C: Comparative efficacy of commercial mycoplasma hyopneumoniae and porcine circovirus 2 (PCV2) vaccines in pigs experimentally infected with M. Hyopneumoniae and PCV2. Vaccine 2011, 29:3206-3212.
- [16]Pogranichnyy RM, Yoon KJ, Harms PA, Swenson SL, Zimmerman JJ, Sorden SD: Characterization of immune response of young pigs to porcine circovirus type 2 infection. Viral Immunol 2000, 13:143-153.
- [17]Rodriguez-Arrioja GM, Segalés J, Balasch M, Rosell C, Quintant J, Folch JM, Plana-Duran J, Mankertz A, Domingo M: Serum antibodies to porcine circovirus type 1 and type 2 in pigs with and without PMWS. Vet Rec 2000, 146:762-764.
- [18]Williams PP: Immunomodulating effects of intestinal absorbed maternal colostral leukocytes by neonatal pigs. Can Vet Res 1993, 57:1-8.
- [19]Sosa GA, Quiroga MF, Roux ME: Flow cytometric analysis of T-lymphocytes from nasopharynx-associated lymphoid tissue (NALT) in a model of secondary immunodeficiency in wistar rats. Immunobiology 2009, 214:384-391.
- [20]Ladekjær-Mikkelsen AS, Nielsen J, Stadejek T, Storgaad T, Krakowka S, Ellis J, McNeilly F, Allan G, Botner A: Reproduction of postweaning multisystemic wasting syndrome (PMWS) in immunostimulated and non-immunostimulated 3-week-old piglets experimentally infected with porcine circovirus type 2 (PCV2). Vet Microbiol 2002, 89:97-114.
- [21]Liu Q, Wang L, Willson P, Babiuk A: Quantitative, competitive PCR analysis of porcine circovirus DNA in serum from pigs with postweaning multisystemic wasting syndrome. J Clin Microbiol 2000, 38:3474-3477.
- [22]Rosell C, Segalés J, Plana-Duran J, Balasch M, Rodriguez-Arrioja GM, Kennedy S, Allan GM, McNeilly F, Latimer KS, Domingo M: Pathological, immunohistochemical, and in-situ hybridization studies of natural cases of postweaning multisystemic wasting syndrome (PMWS) in pigs. J Comp Pathol 1999, 120:59-78.
- [23]Opriessnig T, Patterson AR, Madson DM, Pal N, Ramamoorthy S, Meng XJ, Halbur PG: Comparison of the effectiveness of passive (dam) versus active (piglet) immunization against porcine circovirus type 2 (PCV2) and impact of passively derived PCV2 vaccine-induced immunity on vaccination. Vet Microbiol 2010, 142:177-183.
- [24]Schroder K, Hertzog PJ, Ravasi T, Hume DA: Interferon-γ: an overview of signals, mechanisms and functions. J Leuk Biol 2004, 75:163-189.
- [25]Nielsen J, Vincent IE, Bøtner A, Ladekaer-Mikkelsen AS, Allan G, Summerfield A, Mc-Cullough KC: Association of lymphopenia with porcine circovirus type 2 induced postweaning multisystemic wasting syndrome (PMWS). Vet Immunol Immunopathol 2003, 92:97-111.
- [26]Segalés J, Alonso F, Rosell C, Pastor J, Chianini F, Campos E, Lopez-Fuertes L, Quintana J, Rodriquez-Arrioja G, Calsamiglia M, Pujols J, Domingues J, Domingo M: Changes in peripheral blood leukocyte populations in pigs with natural postweaning multisystemic wasting syndrome (PMWS). Vet Immunol Immunopathol 2001, 81:37-44.
- [27]Kim J, Chung HK, Jung T, Cho WS, Choi C, Chae C: Postweaning multisystemic wasting syndrome of pigs in Korea: prevalence, microscopic lesions and coexisting microorganisms. J Vet Med Sci 2002, 64:57-62.
- [28]Pallares FJ, Halbur PG, Opriessnig T, Sorden SD, Villar D, Janke BH, Yaeger MJ, Larson DJ, Schwartz KJ, Yoon KJ, Hoffman LJ: Porcine circovirus type 2 (PCV-2) coinfections in US field cases of postweaning multisystemic wasting syndrome (PMWS). J Vet Diagn Invest 2002, 14:515-519.
- [29]Sanders VM: Epigenetic regulation of Th1 and Th2 cell development. Brain Behav Immun 2006, 20:317-324.
PDF