期刊论文详细信息
Cell & Bioscience
Histone H3 lysine 4 methyltransferases and demethylases in self-renewal anddifferentiation of stem cells
Min Gyu Lee1  Bingnan Gu1 
[1] Department of Molecular and Cellular Oncology, The University of Texas MDAnderson Cancer Center, 1515 Holcombe Blvd., Houston, TX 77030, USA
关键词: Differentiation;    Self-renewal;    Stem cell;    Demethylase;    Methyltransferase;    H3K4;    Histone methylation;   
Others  :  791507
DOI  :  10.1186/2045-3701-3-39
 received in 2013-06-17, accepted in 2013-07-27,  发布年份 2013
PDF
【 摘 要 】

Epigenetic mechanisms are fundamental to understanding the regulatory networks of gene expression that govern stem cell maintenance and differentiation. Methylated histone H3 lysine 4 (H3K4) has emerged as a key epigenetic signal for gene transcription; it is dynamically modulated by several specific H3K4 methyltransferases and demethylases. Recent studies have described new epigenetic mechanisms by which H3K4 methylation modifiers control self-renewal and lineage commitments of stem cells. Such advances in stem cell biology would have a high impact on the research fields of cancer stem cell and regenerative medicine. In this review, we discuss the recent progress in understanding the roles of H3K4 methylation modifiers in regulating embryonic and adult stem cells’ fates.

【 授权许可】

   
2013 Gu and Lee; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20140705014017439.pdf 1775KB PDF download
Figure 4. 86KB Image download
Figure 3. 109KB Image download
Figure 2. 73KB Image download
Figure 1. 107KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

【 参考文献 】
  • [1]Takahashi K, Yamanaka S: Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 2006, 126:663-676.
  • [2]Meissner A: Epigenetic modifications in pluripotent and differentiated cells. Nat Biotechnol 2010, 28:1079-1088.
  • [3]Hawkins RD, Hon GC, Lee LK, Ngo Q, Lister R, Pelizzola M, Edsall LE, Kuan S, Luu Y, Klugman S, et al.: Distinct epigenomic landscapes of pluripotent and lineage-committed human cells. Cell Stem Cell 2010, 6:479-491.
  • [4]Sims RJ 3rd, Nishioka K, Reinberg D: Histone lysine methylation: a signature for chromatin function. Trends Genet 2003, 19:629-639.
  • [5]Miller T, Krogan NJ, Dover J, Erdjument-Bromage H, Tempst P, Johnston M, Greenblatt JF, Shilatifard A: COMPASS: a complex of proteins associated with a trithorax-related SET domain protein. Proc Natl Acad Sci USA 2001, 98:12902-12907.
  • [6]Wang H, Cao R, Xia L, Erdjument-Bromage H, Borchers C, Tempst P, Zhang Y: Purification and functional characterization of a histone H3-lysine 4-specific methyltransferase. Mol Cell 2001, 8:1207-1217.
  • [7]Briggs SD, Bryk M, Strahl BD, Cheung WL, Davie JK, Dent SY, Winston F, Allis CD: Histone H3 lysine 4 methylation is mediated by Set1 and required for cell growth and rDNA silencing in Saccharomyces cerevisiae. Genes Dev 2001, 15:3286-3295.
  • [8]Roguev A, Schaft D, Shevchenko A, Pijnappel WW, Wilm M, Aasland R, Stewart AF: The Saccharomyces cerevisiae Set1 complex includes an Ash2 homologue and methylates histone 3 lysine 4. EMBO J 2001, 20:7137-7148.
  • [9]Bryk M, Briggs SD, Strahl BD, Curcio MJ, Allis CD, Winston F: Evidence that Set1, a factor required for methylation of histone H3, regulates rDNA silencing in S. cerevisiae by a Sir2-independent mechanism. Curr Biol 2002, 12:165-170.
  • [10]Krogan NJ, Dover J, Khorrami S, Greenblatt JF, Schneider J, Johnston M, Shilatifard A: COMPASS, a histone H3 (Lysine 4) methyltransferase required for telomeric silencing of gene expression. J Biol Chem 2002, 277:10753-10755.
  • [11]Nakamura T, Mori T, Tada S, Krajewski W, Rozovskaia T, Wassell R, Dubois G, Mazo A, Croce CM, Canaani E: ALL-1 is a histone methyltransferase that assembles a supercomplex of proteins involved in transcriptional regulation. Mol Cell 2002, 10:1119-1128.
  • [12]Wysocka J, Myers MP, Laherty CD, Eisenman RN, Herr W: Human Sin3 deacetylase and trithorax-related Set1/Ash2 histone H3-K4 methyltransferase are tethered together selectively by the cell-proliferation factor HCF-1. Genes Dev 2003, 17:896-911.
  • [13]Byrd KN, Shearn A: ASH1, a Drosophila trithorax group protein, is required for methylation of lysine 4 residues on histone H3. Proc Natl Acad Sci USA 2003, 100:11535-11540.
  • [14]Goo YH, Sohn YC, Kim DH, Kim SW, Kang MJ, Jung DJ, Kwak E, Barlev NA, Berger SL, Chow VT, et al.: Activating signal cointegrator 2 belongs to a novel steady-state complex that contains a subset of trithorax group proteins. Mol Cell Biol 2003, 23:140-149.
  • [15]Hamamoto R, Furukawa Y, Morita M, Iimura Y, Silva FP, Li M, Yagyu R, Nakamura Y: SMYD3 encodes a histone methyltransferase involved in the proliferation of cancer cells. Nat Cell Biol 2004, 6:731-740.
  • [16]Yokoyama A, Wang Z, Wysocka J, Sanyal M, Aufiero DJ, Kitabayashi I, Herr W, Cleary ML: Leukemia proto-oncoprotein MLL forms a SET1-like histone methyltransferase complex with menin to regulate Hox gene expression. Mol Cell Biol 2004, 24:5639-5649.
  • [17]Dou Y, Milne TA, Tackett AJ, Smith ER, Fukuda A, Wysocka J, Allis CD, Chait BT, Hess JL, Roeder RG: Physical association and coordinate function of the H3 K4 methyltransferase MLL1 and the H4 K16 acetyltransferase MOF. Cell 2005, 121:873-885.
  • [18]Hayashi K, Yoshida K, Matsui Y: A histone H3 methyltransferase controls epigenetic events required for meiotic prophase. Nature 2005, 438:374-378.
  • [19]Lee JH, Skalnik DG: CpG-binding protein (CXXC finger protein 1) is a component of the mammalian Set1 histone H3-Lys4 methyltransferase complex, the analogue of the yeast Set1/COMPASS complex. J Biol Chem 2005, 280:41725-41731.
  • [20]Lee SH, Oshige M, Durant ST, Rasila KK, Williamson EA, Ramsey H, Kwan L, Nickoloff JA, Hromas R: The SET domain protein Metnase mediates foreign DNA integration and links integration to nonhomologous end-joining repair. Proc Natl Acad Sci USA 2005, 102:18075-18080.
  • [21]Tan X, Rotllant J, Li H, De Deyne P, Du SJ: SmyD1, a histone methyltransferase, is required for myofibril organization and muscle contraction in zebrafish embryos. Proc Natl Acad Sci USA 2006, 103:2713-2718.
  • [22]Lee JH, Tate CM, You JS, Skalnik DG: Identification and characterization of the human Set1B histone H3-Lys4 methyltransferase complex. J Biol Chem 2007, 282:13419-13428.
  • [23]Abu-Farha M, Lambert JP, Al-Madhoun AS, Elisma F, Skerjanc IS, Figeys D: The tale of two domains: proteomics and genomics analysis of SMYD2, a new histone methyltransferase. Mol Cell Proteomics 2008, 7:560-572.
  • [24]Fujiki R, Chikanishi T, Hashiba W, Ito H, Takada I, Roeder RG, Kitagawa H, Kato S: GlcNAcylation of a histone methyltransferase in retinoic-acid-induced granulopoiesis. Nature 2009, 459:455-459.
  • [25]Shi Y, Lan F, Matson C, Mulligan P, Whetstine JR, Cole PA, Casero RA, Shi Y: Histone demethylation mediated by the nuclear amine oxidase homolog LSD1. Cell 2004, 119:941-953.
  • [26]Lee MG, Wynder C, Cooch N, Shiekhattar R: An essential role for CoREST in nucleosomal histone 3 lysine 4 demethylation. Nature 2005, 437:432-435.
  • [27]Shi YJ, Matson C, Lan F, Iwase S, Baba T, Shi Y: Regulation of LSD1 histone demethylase activity by its associated factors. Mol Cell 2005, 19:857-864.
  • [28]Fang R, Barbera AJ, Xu Y, Rutenberg M, Leonor T, Bi Q, Lan F, Mei P, Yuan GC, Lian C, et al.: Human LSD2/KDM1b/AOF1 regulates gene transcription by modulating intragenic H3K4me2 methylation. Mol Cell 2010, 39:222-233.
  • [29]Metzger E, Wissmann M, Yin N, Muller JM, Schneider R, Peters AH, Gunther T, Buettner R, Schule R: LSD1 demethylates repressive histone marks to promote androgen-receptor-dependent transcription. Nature 2005, 437:436-439.
  • [30]Christensen J, Agger K, Cloos PA, Pasini D, Rose S, Sennels L, Rappsilber J, Hansen KH, Salcini AE, Helin K: RBP2 belongs to a family of demethylases, specific for tri-and dimethylated lysine 4 on histone 3. Cell 2007, 128:1063-1076.
  • [31]Iwase S, Lan F, Bayliss P, De la Torre-Ubieta L, Huarte M, Qi HH, Whetstine JR, Bonni A, Roberts TM, Shi Y: The X-linked mental retardation gene SMCX/JARID1C defines a family of histone H3 lysine 4 demethylases. Cell 2007, 128:1077-1088.
  • [32]Lee MG, Norman J, Shilatifard A, Shiekhattar R: Physical and functional association of a trimethyl H3K4 demethylase and Ring6a/MBLR, a polycomb-like protein. Cell 2007, 128:877-887.
  • [33]Tahiliani M, Mei P, Fang R, Leonor T, Rutenberg M, Shimizu F, Li J, Rao A, Shi Y: The histone H3K4 demethylase SMCX links REST target genes to X-linked mental retardation. Nature 2007, 447:601-605.
  • [34]Yamane K, Tateishi K, Klose RJ, Fang J, Fabrizio LA, Erdjument-Bromage H, Taylor-Papadimitriou J, Tempst P, Zhang Y: PLU-1 is an H3K4 demethylase involved in transcriptional repression and breast cancer cell proliferation. Mol Cell 2007, 25:801-812.
  • [35]Secombe J, Li L, Carlos L, Eisenman RN: The Trithorax group protein Lid is a trimethyl histone H3K4 demethylase required for dMyc-induced cell growth. Genes Dev 2007, 21:537-551.
  • [36]Pan G, Tian S, Nie J, Yang C, Ruotti V, Wei H, Jonsdottir GA, Stewart R, Thomson JA: Whole-genome analysis of histone H3 lysine 4 and lysine 27 methylation in human embryonic stem cells. Cell Stem Cell 2007, 1:299-312.
  • [37]Zhao XD, Han X, Chew JL, Liu J, Chiu KP, Choo A, Orlov YL, Sung WK, Shahab A, Kuznetsov VA, et al.: Whole-genome mapping of histone H3 Lys4 and 27 trimethylations reveals distinct genomic compartments in human embryonic stem cells. Cell Stem Cell 2007, 1:286-298.
  • [38]Shilatifard A: The COMPASS family of histone H3K4 methylases: mechanisms of regulation in development and disease pathogenesis. Annu Rev Biochem 2012, 81:65-95.
  • [39]Barski A, Cuddapah S, Cui K, Roh TY, Schones DE, Wang Z, Wei G, Chepelev I, Zhao K: High-resolution profiling of histone methylations in the human genome. Cell 2007, 129:823-837.
  • [40]Pokholok DK, Harbison CT, Levine S, Cole M, Hannett NM, Lee TI, Bell GW, Walker K, Rolfe PA, Herbolsheimer E, et al.: Genome-wide map of nucleosome acetylation and methylation in yeast. Cell 2005, 122:517-527.
  • [41]Guenther MG, Levine SS, Boyer LA, Jaenisch R, Young RA: A chromatin landmark and transcription initiation at most promoters in human cells. Cell 2007, 130:77-88.
  • [42]Bernstein BE, Mikkelsen TS, Xie X, Kamal M, Huebert DJ, Cuff J, Fry B, Meissner A, Wernig M, Plath K, et al.: A bivalent chromatin structure marks key developmental genes in embryonic stem cells. Cell 2006, 125:315-326.
  • [43]Mikkelsen TS, Hanna J, Zhang X, Ku M, Wernig M, Schorderet P, Bernstein BE, Jaenisch R, Lander ES, Meissner A: Dissecting direct reprogramming through integrative genomic analysis. Nature 2008, 454:49-55.
  • [44]Adamo A, Sese B, Boue S, Castano J, Paramonov I, Barrero MJ, Izpisua Belmonte JC: LSD1 regulates the balance between self-renewal and differentiation in human embryonic stem cells. Nat Cell Biol 2011, 13:652-659.
  • [45]Whyte WA, Bilodeau S, Orlando DA, Hoke HA, Frampton GM, Foster CT, Cowley SM, Young RA: Enhancer decommissioning by LSD1 during embryonic stem cell differentiation. Nature 2012, 482:221-225.
  • [46]Kimura H, Tada M, Nakatsuji N, Tada T: Histone code modifications on pluripotential nuclei of reprogrammed somatic cells. Mol Cell Biol 2004, 24:5710-5720.
  • [47]Ang YS, Tsai SY, Lee DF, Monk J, Su J, Ratnakumar K, Ding J, Ge Y, Darr H, Chang B, et al.: Wdr5 mediates self-renewal and reprogramming via the embryonic stem cell core transcriptional network. Cell 2011, 145:183-197.
  • [48]Jenuwein T, Allis CD: Translating the histone code. Science 2001, 293:1074-1080.
  • [49]Bernstein BE, Kamal M, Lindblad-Toh K, Bekiranov S, Bailey DK, Huebert DJ, McMahon S, Karlsson EK, Kulbokas EJ 3rd, Gingeras TR, et al.: Genomic maps and comparative analysis of histone modifications in human and mouse. Cell 2005, 120:169-181.
  • [50]Weber M, Hellmann I, Stadler MB, Ramos L, Paabo S, Rebhan M, Schubeler D: Distribution, silencing potential and evolutionary impact of promoter DNA methylation in the human genome. Nat Genet 2007, 39:457-466.
  • [51]Visel A, Blow MJ, Li Z, Zhang T, Akiyama JA, Holt A, Plajzer-Frick I, Shoukry M, Wright C, Chen F, et al.: ChIP-seq accurately predicts tissue-specific activity of enhancers. Nature 2009, 457:854-858.
  • [52]Heintzman ND, Hon GC, Hawkins RD, Kheradpour P, Stark A, Harp LF, Ye Z, Lee LK, Stuart RK, Ching CW, et al.: Histone modifications at human enhancers reflect global cell-type-specific gene expression. Nature 2009, 459:108-112.
  • [53]Jiang H, Shukla A, Wang X, Chen WY, Bernstein BE, Roeder RG: Role for Dpy-30 in ES cell-fate specification by regulation of H3K4 methylation within bivalent domains. Cell 2011, 144:513-525.
  • [54]Steward MM, Lee JS, O'Donovan A, Wyatt M, Bernstein BE, Shilatifard A: Molecular regulation of H3K4 trimethylation by ASH2L, a shared subunit of MLL complexes. Nat Struct Mol Biol 2006, 13:852-854.
  • [55]Dou Y, Milne TA, Ruthenburg AJ, Lee S, Lee JW, Verdine GL, Allis CD, Roeder RG: Regulation of MLL1 H3K4 methyltransferase activity by its core components. Nat Struct Mol Biol 2006, 13:713-719.
  • [56]Cho YW, Hong T, Hong S, Guo H, Yu H, Kim D, Guszczynski T, Dressler GR, Copeland TD, Kalkum M, Ge K: PTIP associates with MLL3- and MLL4-containing histone H3 lysine 4 methyltransferase complex. J Biol Chem 2007, 282:20395-20406.
  • [57]Hughes CM, Rozenblatt-Rosen O, Milne TA, Copeland TD, Levine SS, Lee JC, Hayes DN, Shanmugam KS, Bhattacharjee A, Biondi CA, et al.: Menin associates with a trithorax family histone methyltransferase complex and with the hoxc8 locus. Mol Cell 2004, 13:587-597.
  • [58]Issaeva I, Zonis Y, Rozovskaia T, Orlovsky K, Croce CM, Nakamura T, Mazo A, Eisenbach L, Canaani E: Knockdown of ALR (MLL2) reveals ALR target genes and leads to alterations in cell adhesion and growth. Mol Cell Biol 2007, 27:1889-1903.
  • [59]Lee JH, Skalnik DG: Wdr82 is a C-terminal domain-binding protein that recruits the Setd1A Histone H3-Lys4 methyltransferase complex to transcription start sites of transcribed human genes. Mol Cell Biol 2008, 28:609-618.
  • [60]Lee MG, Villa R, Trojer P, Norman J, Yan KP, Reinberg D, Di Croce L, Shiekhattar R: Demethylation of H3K27 regulates polycomb recruitment and H2A ubiquitination. Science 2007, 318:447-450.
  • [61]Mohan M, Herz HM, Smith ER, Zhang Y, Jackson J, Washburn MP, Florens L, Eissenberg JC, Shilatifard A: The COMPASS family of H3K4 methylases in Drosophila. Mol Cell Biol 2011, 31:4310-4318.
  • [62]Patel SR, Kim D, Levitan I, Dressler GR: The BRCT-domain containing protein PTIP links PAX2 to a histone H3, lysine 4 methyltransferase complex. Dev Cell 2007, 13:580-592.
  • [63]Van Nuland R, Smits AH, Pallaki P, Jansen PW, Vermeulen M, Timmers HT: Quantitative Dissection and Stoichiometry Determination of the Human SET1/MLL Histone Methyltransferase Complexes. Mol Cell Biol 2013, 33:2067-2077.
  • [64]Tkachuk DC, Kohler S, Cleary ML: Involvement of a homolog of Drosophila trithorax by 11q23 chromosomal translocations in acute leukemias. Cell 1992, 71:691-700.
  • [65]Gu Y, Nakamura T, Alder H, Prasad R, Canaani O, Cimino G, Croce CM, Canaani E: The t(4;11) chromosome translocation of human acute leukemias fuses the ALL-1 gene, related to Drosophila trithorax, to the AF-4 gene. Cell 1992, 71:701-708.
  • [66]Djabali M, Selleri L, Parry P, Bower M, Young BD, Evans GA: A trithorax-like gene is interrupted by chromosome 11q23 translocations in acute leukaemias. Nat Genet 1992, 2:113-118.
  • [67]Yokoyama A, Kitabayashi I, Ayton PM, Cleary ML, Ohki M: Leukemia proto-oncoprotein MLL is proteolytically processed into 2 fragments with opposite transcriptional properties. Blood 2002, 100:3710-3718.
  • [68]Hsieh JJ, Cheng EH, Korsmeyer SJ: Taspase1: a threonine aspartase required for cleavage of MLL and proper HOX gene expression. Cell 2003, 115:293-303.
  • [69]Yu BD, Hess JL, Horning SE, Brown GA, Korsmeyer SJ: Altered Hox expression and segmental identity in Mll-mutant mice. Nature 1995, 378:505-508.
  • [70]Ernst P, Mabon M, Davidson AJ, Zon LI, Korsmeyer SJ: An Mll-dependent Hox program drives hematopoietic progenitor expansion. Curr Biol 2004, 14:2063-2069.
  • [71]Gan T, Jude CD, Zaffuto K, Ernst P: Developmentally induced Mll1 loss reveals defects in postnatal haematopoiesis. Leukemia 2010, 24:1732-1741.
  • [72]McMahon KA, Hiew SY, Hadjur S, Veiga-Fernandes H, Menzel U, Price AJ, Kioussis D, Williams O, Brady HJ: Mll has a critical role in fetal and adult hematopoietic stem cell self-renewal. Cell Stem Cell 2007, 1:338-345.
  • [73]Lim DA, Huang YC, Swigut T, Mirick AL, Garcia-Verdugo JM, Wysocka J, Ernst P, Alvarez-Buylla A: Chromatin remodelling factor Mll1 is essential for neurogenesis from postnatal neural stem cells. Nature 2009, 458:529-533.
  • [74]FitzGerald KT, Diaz MO: MLL2: A new mammalian member of the trx/MLL family of genes. Genomics 1999, 59:187-192.
  • [75]Glaser S, Schaft J, Lubitz S, Vintersten K, Van der Hoeven F, Tufteland KR, Aasland R, Anastassiadis K, Ang SL, Stewart AF: Multiple epigenetic maintenance factors implicated by the loss of Mll2 in mouse development. Development 2006, 133:1423-1432.
  • [76]Glaser S, Lubitz S, Loveland KL, Ohbo K, Robb L, Schwenk F, Seibler J, Roellig D, Kranz A, Anastassiadis K, Stewart AF: The histone 3 lysine 4 methyltransferase, Mll2, is only required briefly in development and spermatogenesis. Epigenetics Chromatin 2009, 2:5.
  • [77]Lubitz S, Glaser S, Schaft J, Stewart AF, Anastassiadis K: Increased apoptosis and skewed differentiation in mouse embryonic stem cells lacking the histone methyltransferase Mll2. Mol Biol Cell 2007, 18:2356-2366.
  • [78]Sedkov Y, Cho E, Petruk S, Cherbas L, Smith ST, Jones RS, Cherbas P, Canaani E, Jaynes JB, Mazo A: Methylation at lysine 4 of histone H3 in ecdysone-dependent development of Drosophila. Nature 2003, 426:78-83.
  • [79]Ansari KI, Hussain I, Shrestha B, Kasiri S, Mandal SS: HOXC6 Is transcriptionally regulated via coordination of MLL histone methylase and estrogen receptor in an estrogen environment. J Mol Biol 2011, 411:334-349.
  • [80]Lee S, Kim DH, Goo YH, Lee YC, Lee SK, Lee JW: Crucial roles for interactions between MLL3/4 and INI1 in nuclear receptor transactivation. Mol Endocrinol 2009, 23:610-619.
  • [81]Sjoblom T, Jones S, Wood LD, Parsons DW, Lin J, Barber TD, Mandelker D, Leary RJ, Ptak J, Silliman N, et al.: The consensus coding sequences of human breast and colorectal cancers. Science 2006, 314:268-274.
  • [82]Morin RD, Mendez-Lago M, Mungall AJ, Goya R, Mungall KL, Corbett RD, Johnson NA, Severson TM, Chiu R, Field M, et al.: Frequent mutation of histone-modifying genes in non-Hodgkin lymphoma. Nature 2011, 476:298-303.
  • [83]Parsons DW, Li M, Zhang X, Jones S, Leary RJ, Lin JC, Boca SM, Carter H, Samayoa J, Bettegowda C, et al.: The genetic landscape of the childhood cancer medulloblastoma. Science 2011, 331:435-439.
  • [84]Jones DT, Jager N, Kool M, Zichner T, Hutter B, Sultan M, Cho YJ, Pugh TJ, Hovestadt V, Stutz AM, et al.: Dissecting the genomic complexity underlying medulloblastoma. Nature 2012, 488:100-105.
  • [85]Pugh TJ, Weeraratne SD, Archer TC, Pomeranz Krummel DA, Auclair D, Bochicchio J, Carneiro MO, Carter SL, Cibulskis K, Erlich RL, et al.: Medulloblastoma exome sequencing uncovers subtype-specific somatic mutations. Nature 2012, 488:106-110.
  • [86]Kanda H, Nguyen A, Chen L, Okano H, Hariharan IK: The Drosophila ortholog of MLL3 and MLL4, trithorax related, functions as a negative regulator of tissue growth. Mol Cell Biol 2013, 33:1702-1710.
  • [87]Herz HM, Mohan M, Garruss AS, Liang K, Takahashi YH, Mickey K, Voets O, Verrijzer CP, Shilatifard A: Enhancer-associated H3K4 monomethylation by Trithorax-related, the Drosophila homolog of mammalian Mll3/Mll4. Genes Dev 2012, 26:2604-2620.
  • [88]Lee S, Lee DK, Dou Y, Lee J, Lee B, Kwak E, Kong YY, Lee SK, Roeder RG, Lee JW: Coactivator as a target gene specificity determinant for histone H3 lysine 4 methyltransferases. Proc Natl Acad Sci USA 2006, 103:15392-15397.
  • [89]Lee J, Saha PK, Yang QH, Lee S, Park JY, Suh Y, Lee SK, Chan L, Roeder RG, Lee JW: Targeted inactivation of MLL3 histone H3-Lys-4 methyltransferase activity in the mouse reveals vital roles for MLL3 in adipogenesis. Proc Natl Acad Sci USA 2008, 105:19229-19234.
  • [90]Hopkin AS, Gordon W, Klein RH, Espitia F, Daily K, Zeller M, Baldi P, Andersen B: GRHL3/GET1 and trithorax group members collaborate to activate the epidermal progenitor differentiation program. PLoS Genet 2012, 8:e1002829.
  • [91]Dhar SS, Lee SH, Kan PY, Voigt P, Ma L, Shi X, Reinberg D, Lee MG: Trans-tail regulation of MLL4-catalyzed H3K4 methylation by H4R3 symmetric dimethylation is mediated by a tandem PHD of MLL4. Genes Dev 2012, 26:2749-2762.
  • [92]Madan V, Madan B, Brykczynska U, Zilbermann F, Hogeveen K, Dohner K, Dohner H, Weber O, Blum C, Rodewald HR, et al.: Impaired function of primitive hematopoietic cells in mice lacking the Mixed-Lineage-Leukemia homolog MLL5. Blood 2009, 113:1444-1454.
  • [93]Heuser M, Yap DB, Leung M, De Algara TR, Tafech A, McKinney S, Dixon J, Thresher R, Colledge B, Carlton M, et al.: Loss of MLL5 results in pleiotropic hematopoietic defects, reduced neutrophil immune function, and extreme sensitivity to DNA demethylation. Blood 2009, 113:1432-1443.
  • [94]Zhang Y, Wong J, Klinger M, Tran MT, Shannon KM, Killeen N: MLL5 contributes to hematopoietic stem cell fitness and homeostasis. Blood 2009, 113:1455-1463.
  • [95]Sebastian S, Sreenivas P, Sambasivan R, Cheedipudi S, Kandalla P, Pavlath GK, Dhawan J: MLL5, a trithorax homolog, indirectly regulates H3K4 methylation, represses cyclin A2 expression, and promotes myogenic differentiation. Proc Natl Acad Sci USA 2009, 106:4719-4724.
  • [96]Yap DB, Walker DC, Prentice LM, McKinney S, Turashvili G, Mooslehner-Allen K, De Algara TR, Fee J, De Tassigny X, Colledge WH, Aparicio S: Mll5 is required for normal spermatogenesis. PLoS One 2011, 6:e27127.
  • [97]Carlone DL, Lee JH, Young SR, Dobrota E, Butler JS, Ruiz J, Skalnik DG: Reduced genomic cytosine methylation and defective cellular differentiation in embryonic stem cells lacking CpG binding protein. Mol Cell Biol 2005, 25:4881-4891.
  • [98]Tate CM, Lee JH, Skalnik DG: CXXC finger protein 1 restricts the Setd1A histone H3K4 methyltransferase complex to euchromatin. FEBS J 2010, 277:210-223.
  • [99]Clouaire T, Webb S, Skene P, Illingworth R, Kerr A, Andrews R, Lee JH, Skalnik D, Bird A: Cfp1 integrates both CpG content and gene activity for accurate H3K4me3 deposition in embryonic stem cells. Genes Dev 2012, 26:1714-1728.
  • [100]Beisel C, Imhof A, Greene J, Kremmer E, Sauer F: Histone methylation by the Drosophila epigenetic transcriptional regulator Ash1. Nature 2002, 419:857-862.
  • [101]Gregory GD, Vakoc CR, Rozovskaia T, Zheng X, Patel S, Nakamura T, Canaani E, Blobel GA: Mammalian ASH1L is a histone methyltransferase that occupies the transcribed region of active genes. Mol Cell Biol 2007, 27:8466-8479.
  • [102]Tanaka Y, Katagiri Z, Kawahashi K, Kioussis D, Kitajima S: Trithorax-group protein ASH1 methylates histone H3 lysine 36. Gene 2007, 397:161-168.
  • [103]An S, Yeo KJ, Jeon YH, Song JJ: Crystal structure of the human histone methyltransferase ASH1L catalytic domain and its implications for the regulatory mechanism. J Biol Chem 2011, 286:8369-8374.
  • [104]Yuan W, Xu M, Huang C, Liu N, Chen S, Zhu B: H3K36 methylation antagonizes PRC2-mediated H3K27 methylation. J Biol Chem 2011, 286:7983-7989.
  • [105]Tanaka Y, Kawahashi K, Katagiri Z, Nakayama Y, Mahajan M, Kioussis D: Dual function of histone H3 lysine 36 methyltransferase ASH1 in regulation of Hox gene expression. PLoS One 2011, 6:e28171.
  • [106]Xiao B, Jing C, Wilson JR, Walker PA, Vasisht N, Kelly G, Howell S, Taylor IA, Blackburn GM, Gamblin SJ: Structure and catalytic mechanism of the human histone methyltransferase SET7/9. Nature 2003, 421:652-656.
  • [107]Kwon T, Chang JH, Kwak E, Lee CW, Joachimiak A, Kim YC, Lee J, Cho Y: Mechanism of histone lysine methyl transfer revealed by the structure of SET7/9-AdoMet. EMBO J 2003, 22:292-303.
  • [108]Nishioka K, Chuikov S, Sarma K, Erdjument-Bromage H, Allis CD, Tempst P, Reinberg D: Set9, a novel histone H3 methyltransferase that facilitates transcription by precluding histone tail modifications required for heterochromatin formation. Genes Dev 2002, 16:479-489.
  • [109]Tao Y, Neppl RL, Huang ZP, Chen J, Tang RH, Cao R, Zhang Y, Jin SW, Wang DZ: The histone methyltransferase Set7/9 promotes myoblast differentiation and myofibril assembly. J Cell Biol 2011, 194:551-565.
  • [110]Gottlieb PD, Pierce SA, Sims RJ, Yamagishi H, Weihe EK, Harriss JV, Maika SD, Kuziel WA, King HL, Olson EN, et al.: Bop encodes a muscle-restricted protein containing MYND and SET domains and is essential for cardiac differentiation and morphogenesis. Nat Genet 2002, 31:25-32.
  • [111]Brown MA, Sims RJ 3rd, Gottlieb PD, Tucker PW: Identification and characterization of Smyd2: a split SET/MYND domain-containing histone H3 lysine 36-specific methyltransferase that interacts with the Sin3 histone deacetylase complex. Mol Cancer 2006, 5:26.
  • [112]Huang J, Perez-Burgos L, Placek BJ, Sengupta R, Richter M, Dorsey JA, Kubicek S, Opravil S, Jenuwein T, Berger SL: Repression of p53 activity by Smyd2-mediated methylation. Nature 2006, 444:629-632.
  • [113]Saddic LA, West LE, Aslanian A, Yates JR 3rd, Rubin SM, Gozani O, Sage J: Methylation of the retinoblastoma tumor suppressor by SMYD2. J Biol Chem 2010, 285:37733-37740.
  • [114]Diehl F, Brown MA, Van Amerongen MJ, Novoyatleva T, Wietelmann A, Harriss J, Ferrazzi F, Bottger T, Harvey RP, Tucker PW, Engel FB: Cardiac deletion of Smyd2 is dispensable for mouse heart development. PLoS One 2010, 5:e9748.
  • [115]Van Aller GS, Reynoird N, Barbash O, Huddleston M, Liu S, Zmoos AF, McDevitt P, Sinnamon R, Le B, Mas G, et al.: Smyd3 regulates cancer cell phenotypes and catalyzes histone H4 lysine 5 methylation. Epigenetics 2012, 7:340-343.
  • [116]Fujii T, Tsunesumi S, Yamaguchi K, Watanabe S, Furukawa Y: Smyd3 is required for the development of cardiac and skeletal muscle in zebrafish. PLoS One 2011, 6:e23491.
  • [117]Cordaux R, Udit S, Batzer MA, Feschotte C: Birth of a chimeric primate gene by capture of the transposase gene from a mobile element. Proc Natl Acad Sci USA 2006, 103:8101-8106.
  • [118]Baudat F, Buard J, Grey C, Fledel-Alon A, Ober C, Przeworski M, Coop G, De Massy B: PRDM9 is a major determinant of meiotic recombination hotspots in humans and mice. Science 2010, 327:836-840.
  • [119]Myers S, Bowden R, Tumian A, Bontrop RE, Freeman C, MacFie TS, McVean G, Donnelly P: Drive against hotspot motifs in primates implicates the PRDM9 gene in meiotic recombination. Science 2010, 327:876-879.
  • [120]Parvanov ED, Petkov PM, Paigen K: Prdm9 controls activation of mammalian recombination hotspots. Science 2010, 327:835.
  • [121]Wan M, Liang J, Xiong Y, Shi F, Zhang Y, Lu W, He Q, Yang D, Chen R, Liu D, et al.: The trithorax group protein Ash2l is essential for pluripotency and maintaining open chromatin in embryonic stem cells. J Biol Chem 2013, 288:5039-5048.
  • [122]Tsukada Y, Fang J, Erdjument-Bromage H, Warren ME, Borchers CH, Tempst P, Zhang Y: Histone demethylation by a family of JmjC domain-containing proteins. Nature 2006, 439:811-816.
  • [123]Kooistra SM, Helin K: Molecular mechanisms and potential functions of histone demethylases. Nat Rev Mol Cell Biol 2012, 13:297-311.
  • [124]Sinha KM, Yasuda H, Coombes MM, Dent SY, De Crombrugghe B: Regulation of the osteoblast-specific transcription factor Osterix by NO66, a Jumonji family histone demethylase. EMBO J 2010, 29:68-79.
  • [125]Ge W, Wolf A, Feng T, Ho CH, Sekirnik R, Zayer A, Granatino N, Cockman ME, Loenarz C, Loik ND, et al.: Oxygenase-catalyzed ribosome hydroxylation occurs in prokaryotes and humans. Nat Chem Biol 2012, 8:960-962.
  • [126]Yang M, Gocke CB, Luo X, Borek D, Tomchick DR, Machius M, Otwinowski Z, Yu H: Structural basis for CoREST-dependent demethylation of nucleosomes by the human LSD1 histone demethylase. Mol Cell 2006, 23:377-387.
  • [127]Wang J, Scully K, Zhu X, Cai L, Zhang J, Prefontaine GG, Krones A, Ohgi KA, Zhu P, Garcia-Bassets I, et al.: Opposing LSD1 complexes function in developmental gene activation and repression programmes. Nature 2007, 446:882-887.
  • [128]Wang J, Hevi S, Kurash JK, Lei H, Gay F, Bajko J, Su H, Sun W, Chang H, Xu G, et al.: The lysine demethylase LSD1 (KDM1) is required for maintenance of global DNA methylation. Nat Genet 2009, 41:125-129.
  • [129]Foster CT, Dovey OM, Lezina L, Luo JL, Gant TW, Barlev N, Bradley A, Cowley SM: Lysine-specific demethylase 1 regulates the embryonic transcriptome and CoREST stability. Mol Cell Biol 2010, 30:4851-4863.
  • [130]Sun G, Alzayady K, Stewart R, Ye P, Yang S, Li W, Shi Y: Histone demethylase LSD1 regulates neural stem cell proliferation. Mol Cell Biol 2010, 30:1997-2005.
  • [131]Musri MM, Carmona MC, Hanzu FA, Kaliman P, Gomis R, Parrizas M: Histone demethylase LSD1 regulates adipogenesis. J Biol Chem 2010, 285:30034-30041.
  • [132]Choi J, Jang H, Kim H, Kim ST, Cho EJ, Youn HD: Histone demethylase LSD1 is required to induce skeletal muscle differentiation by regulating myogenic factors. Biochem Biophys Res Commun 2010, 401:327-332.
  • [133]Macfarlan TS, Gifford WD, Agarwal S, Driscoll S, Lettieri K, Wang J, Andrews SE, Franco L, Rosenfeld MG, Ren B, Pfaff SL: Endogenous retroviruses and neighboring genes are coordinately repressed by LSD1/KDM1A. Genes Dev 2011, 25:594-607.
  • [134]Karytinos A, Forneris F, Profumo A, Ciossani G, Battaglioli E, Binda C, Mattevi A: A novel mammalian flavin-dependent histone demethylase. J Biol Chem 2009, 284:17775-17782.
  • [135]Ciccone DN, Su H, Hevi S, Gay F, Lei H, Bajko J, Xu G, Li E, Chen T: KDM1B is a histone H3K4 demethylase required to establish maternal genomic imprints. Nature 2009, 461:415-418.
  • [136]Yang Z, Jiang J, Stewart DM, Qi S, Yamane K, Li J, Zhang Y, Wong J: AOF1 is a histone H3K4 demethylase possessing demethylase activity-independent repression function. Cell Res 2010, 20:276-287.
  • [137]Zhang Q, Qi S, Xu M, Yu L, Tao Y, Deng Z, Wu W, Li J, Chen Z, Wong J: Structure-function analysis reveals a novel mechanism for regulation of histone demethylase LSD2/AOF1/KDM1b. Cell Res 2013, 23:225-241.
  • [138]Defeo-Jones D, Huang PS, Jones RE, Haskell KM, Vuocolo GA, Hanobik MG, Huber HE, Oliff A: Cloning of cDNAs for cellular proteins that bind to the retinoblastoma gene product. Nature 1991, 352:251-254.
  • [139]Klose RJ, Yan Q, Tothova Z, Yamane K, Erdjument-Bromage H, Tempst P, Gilliland DG, Zhang Y, Kaelin WG Jr: The retinoblastoma binding protein RBP2 is an H3K4 demethylase. Cell 2007, 128:889-900.
  • [140]Pasini D, Hansen KH, Christensen J, Agger K, Cloos PA, Helin K: Coordinated regulation of transcriptional repression by the RBP2 H3K4 demethylase and Polycomb-Repressive Complex 2. Genes Dev 2008, 22:1345-1355.
  • [141]Peng JC, Valouev A, Swigut T, Zhang J, Zhao Y, Sidow A, Wysocka J: Jarid2/Jumonji coordinates control of PRC2 enzymatic activity and target gene occupancy in pluripotent cells. Cell 2009, 139:1290-1302.
  • [142]Beshiri ML, Holmes KB, Richter WF, Hess S, Islam AB, Yan Q, Plante L, Litovchick L, Gevry N, Lopez-Bigas N, et al.: Coordinated repression of cell cycle genes by KDM5A and E2F4 during differentiation. Proc Natl Acad Sci USA 2012, 109:18499-18504.
  • [143]Ge W, Shi L, Zhou Y, Liu Y, Ma GE, Jiang Y, Xu Y, Zhang X, Feng H: Inhibition of osteogenic differentiation of human adipose-derived stromal cells by retinoblastoma binding protein 2 repression of RUNX2-activated transcription. Stem Cells 2011, 29:1112-1125.
  • [144]Lu PJ, Sundquist K, Baeckstrom D, Poulsom R, Hanby A, Meier-Ewert S, Jones T, Mitchell M, Pitha-Rowe P, Freemont P, Taylor-Papadimitriou J: A novel gene (PLU-1) containing highly conserved putative DNA/chromatin binding motifs is specifically up-regulated in breast cancer. J Biol Chem 1999, 274:15633-15645.
  • [145]Xie L, Pelz C, Wang W, Bashar A, Varlamova O, Shadle S, Impey S: KDM5B regulates embryonic stem cell self-renewal and represses cryptic intragenic transcription. EMBO J 2011, 30:1473-1484.
  • [146]Dey BK, Stalker L, Schnerch A, Bhatia M, Taylor-Papidimitriou J, Wynder C: The histone demethylase KDM5b/JARID1b plays a role in cell fate decisions by blocking terminal differentiation. Mol Cell Biol 2008, 28:5312-5327.
  • [147]Schmitz SU, Albert M, Malatesta M, Morey L, Johansen JV, Bak M, Tommerup N, Abarrategui I, Helin K: Jarid1b targets genes regulating development and is involved in neural differentiation. EMBO J 2011, 30:4586-4600.
  • [148]Albert M, Schmitz SU, Kooistra SM, Malatesta M, Morales Torres C, Rekling JC, Johansen JV, Abarrategui I, Helin K: The Histone Demethylase Jarid1b Ensures Faithful Mouse Development by Protecting Developmental Genes from Aberrant H3K4me3. PLoS Genet 2013, 9:e1003461.
  • [149]Wu J, Ellison J, Salido E, Yen P, Mohandas T, Shapiro LJ: Isolation and characterization of XE169, a novel human gene that escapes X-inactivation. Hum Mol Genet 1994, 3:153-160.
  • [150]Jensen LR, Amende M, Gurok U, Moser B, Gimmel V, Tzschach A, Janecke AR, Tariverdian G, Chelly J, Fryns JP, et al.: Mutations in the JARID1C gene, which is involved in transcriptional regulation and chromatin remodeling, cause X-linked mental retardation. Am J Hum Genet 2005, 76:227-236.
  • [151]Dalgliesh GL, Furge K, Greenman C, Chen L, Bignell G, Butler A, Davies H, Edkins S, Hardy C, Latimer C, et al.: Systematic sequencing of renal carcinoma reveals inactivation of histone modifying genes. Nature 2010, 463:360-363.
  • [152]Outchkourov NS, Muino JM, Kaufmann K, Van Ijcken WF, Koerkamp MJ, Van Leenen D, De Graaf P, Holstege FC, Grosveld FG, Timmers HT: Balancing of Histone H3K4 Methylation States by the Kdm5c/SMCX Histone Demethylase Modulates Promoter and Enhancer Function. Cell Rep 2013, 3:1071-1079.
  • [153]Akasaka T, Takahashi N, Suzuki M, Koseki H, Bodmer R, Koga H: MBLR, a new RING finger protein resembling mammalian Polycomb gene products, is regulated by cell cycle-dependent phosphorylation. Genes Cells 2002, 7:835-850.
  • [154]Brien GL, Gambero G, O'Connell DJ, Jerman E, Turner SA, Egan CM, Dunne EJ, Jurgens MC, Wynne K, Piao L, et al.: Polycomb PHF19 binds H3K36me3 and recruits PRC2 and demethylase NO66 to embryonic stem cell genes during differentiation. Nat Struct Mol Biol 2012, 19:1273-1281.
  • [155]Lynch JT, Harris WJ, Somervaille TC: LSD1 inhibition: a therapeutic strategy in cancer? Expert Opin Ther Targets 2012, 16:1239-1249.
  • [156]Reya T, Morrison SJ, Clarke MF, Weissman IL: Stem cells, cancer, and cancer stem cells. Nature 2001, 414:105-111.
  文献评价指标  
  下载次数:60次 浏览次数:41次