期刊论文详细信息
Human Genomics
Cancer classification in the genomic era: five contemporary problems
Jun Z. Li1  Sofia D. Merajver2  Qingxuan Song1 
[1] Department of Human Genetics, University of Michigan, Ann Arbor, MI, USA;Department of Internal Medicine and Epidemiology, University of Michigan, 5789A Medical Science II, Ann Arbor 48109-5618, MI, USA
关键词: Precision;    Uncertainty;    Evolution;    Integration;    Genomics;    Classification;    Cancer;   
Others  :  1229102
DOI  :  10.1186/s40246-015-0049-8
 received in 2015-07-19, accepted in 2015-10-06,  发布年份 2015
PDF
【 摘 要 】

Classification is an everyday instinct as well as a full-fledged scientific discipline. Throughout the history of medicine, disease classification is central to how we develop knowledge, make diagnosis, and assign treatment. Here, we discuss the classification of cancer and the process of categorizing cancer subtypes based on their observed clinical and biological features. Traditionally, cancer nomenclature is primarily based on organ location, e.g., “lung cancer” designates a tumor originating in lung structures. Within each organ-specific major type, finer subgroups can be defined based on patient age, cell type, histological grades, and sometimes molecular markers, e.g., hormonal receptor status in breast cancer or microsatellite instability in colorectal cancer. In the past 15+ years, high-throughput technologies have generated rich new data regarding somatic variations in DNA, RNA, protein, or epigenomic features for many cancers. These data, collected for increasingly large tumor cohorts, have provided not only new insights into the biological diversity of human cancers but also exciting opportunities to discover previously unrecognized cancer subtypes. Meanwhile, the unprecedented volume and complexity of these data pose significant challenges for biostatisticians, cancer biologists, and clinicians alike. Here, we review five related issues that represent contemporary problems in cancer taxonomy and interpretation. (1) How many cancer subtypes are there? (2) How can we evaluate the robustness of a new classification system? (3) How are classification systems affected by intratumor heterogeneity and tumor evolution? (4) How should we interpret cancer subtypes? (5) Can multiple classification systems co-exist? While related issues have existed for a long time, we will focus on those aspects that have been magnified by the recent influx of complex multi-omics data. Exploration of these problems is essential for data-driven refinement of cancer classification and the successful application of these concepts in precision medicine.

【 授权许可】

   
2015 Song et al.

【 预 览 】
附件列表
Files Size Format View
20151022090800823.pdf 430KB PDF download
【 参考文献 】
  • [1]McKusick VA: On lumpers and splitters, or the nosology of genetic disease. Perspect Biol Med 1969, 12(2):298-312.
  • [2]Weitzel JN, Blazer KR, MacDonald DJ, Culver JO, Offit K: Genetics, genomics, and cancer risk assessment: state of the art and future directions in the era of personalized medicine. CA Cancer J Clin 2011, 61(5):327-359.
  • [3]Levy MA, Lovly CM, Pao W: Translating genomic information into clinical medicine: lung cancer as a paradigm. Genome Res 2012, 22(11):2101-2108.
  • [4]Louis DN, Ohgaki H, Wiestler OD, Cavenee WK, Burger PC, Jouvet A, Scheithauer BW, Kleihues P: The 2007 WHO classification of tumours of the central nervous system. Acta Neuropathol 2007, 114(2):97-109.
  • [5]Prat A, Perou CM: Deconstructing the molecular portraits of breast cancer. Mol Oncol 2011, 5(1):5-23.
  • [6]Morrison DH, Rahardja D, King E, Peng Y, Sarode VR: Tumour biomarker expression relative to age and molecular subtypes of invasive breast cancer. Br J Cancer 2012, 107(2):382-387.
  • [7]Caudle AS, Yu TK, Tucker SL, Bedrosian I, Litton JK, Gonzalez-Angulo AM, Hoffman K, Meric-Bernstam F, Hunt KK, Buchholz TA, et al.: Local-regional control according to surrogate markers of breast cancer subtypes and response to neoadjuvant chemotherapy in breast cancer patients undergoing breast conserving therapy. Breast Cancer Res 2012, 14(3):R83. BioMed Central Full Text
  • [8]Perou CM, Sorlie T, Eisen MB, van de Rijn M, Jeffrey SS, Rees CA, Pollack JR, Ross DT, Johnsen H, Akslen LA, et al.: Molecular portraits of human breast tumours. Nature 2000, 406(6797):747-752.
  • [9]Sorlie T, Tibshirani R, Parker J, Hastie T, Marron JS, Nobel A, Deng S, Johnsen H, Pesich R, Geisler S, et al.: Repeated observation of breast tumor subtypes in independent gene expression data sets. Proc Natl Acad Sci U S A 2003, 100(14):8418-8423.
  • [10]Need AC, McEvoy JP, Gennarelli M, Heinzen EL, Ge D, Maia JM, Shianna KV, He M, Cirulli ET, Gumbs CE, et al.: Exome sequencing followed by large-scale genotyping suggests a limited role for moderately rare risk factors of strong effect in schizophrenia. Am J Hum Genet 2012, 91(2):303-312.
  • [11]Ali HR, Rueda OM, Chin SF, Curtis C, Dunning MJ, Aparicio SA, Caldas C: Genome-driven integrated classification of breast cancer validated in over 7,500 samples. Genome Biol 2014, 15(8):431. BioMed Central Full Text
  • [12]Prat A, Parker J, Karginova O, Fan C, Livasy C, Herschkowitz J, He X, Perou C: Phenotypic and molecular characterization of the claudin-low intrinsic subtype of breast cancer. Breast Cancer Res 2010, 12(5):R68. BioMed Central Full Text
  • [13]Lehmann BD, Bauer JA, Chen X, Sanders ME, Chakravarthy AB, Shyr Y, Pietenpol JA: Identification of human triple-negative breast cancer subtypes and preclinical models for selection of targeted therapies. J Clin Invest 2011, 121(7):2750-2767.
  • [14]Blows FM, Driver KE, Schmidt MK, Broeks A, van Leeuwen FE, Wesseling J, Cheang MC, Gelmon K, Nielsen TO, Blomqvist C, et al.: Subtyping of breast cancer by immunohistochemistry to investigate a relationship between subtype and short and long term survival: a collaborative analysis of data for 10,159 cases from 12 studies. PLoS Med 2010, 7(5):e1000279.
  • [15]Heim D, Budczies J, Stenzinger A, Treue D, Hufnagl P, Denkert C, Dietel M, Klauschen F: Cancer beyond organ and tissue specificity: next-generation-sequencing gene mutation data reveal complex genetic similarities across major cancers. Int J Cancer 2014, 135(10):2362-2369.
  • [16]Hoadley KA, Yau C, Wolf DM, Cherniack AD, Tamborero D, Ng S, Leiserson MD, Niu B, McLellan MD, Uzunangelov V, et al.: Multiplatform analysis of 12 cancer types reveals molecular classification within and across tissues of origin. Cell 2014, 158(4):929-944.
  • [17]Russnes HG, Vollan HK, Lingjaerde OC, Krasnitz A, Lundin P, Naume B, Sorlie T, Borgen E, Rye IH, Langerod A, et al.: Genomic architecture characterizes tumor progression paths and fate in breast cancer patients. Sci Transl Med 2010, 2(38):38ra47.
  • [18]Șenbabaoğlu Y, Michailidis G, Li JZ: Critical limitations of consensus clustering in class discovery. Sci Rep 2014, 4:6207.
  • [19]Handl J, Knowles J, Kell DB: Computational cluster validation in post-genomic data analysis. Bioinformatics 2005, 21(15):3201-3212.
  • [20]Rousseeuw PJ: Silhouettes—a graphical aid to the interpretation and validation of cluster-analysis. J Comput Appl Math 1987, 20:53-65.
  • [21]Price AL, Patterson NJ, Plenge RM, Weinblatt ME, Shadick NA, Reich D: Principal components analysis corrects for stratification in genome-wide association studies. Nat Genet 2006, 38(8):904-909.
  • [22]Kang HM, Sul JH, Service SK, Zaitlen NA, Kong SY, Freimer NB, Sabatti C, Eskin E: Variance component model to account for sample structure in genome-wide association studies. Nat Genet 2010, 42(4):348-354.
  • [23]Hand DJ: Classifier technology and the illusion of progress. Stat Sci 2006, 21(1):1-15.
  • [24]Kleinberg J. An impossibility theorem for clustering. Adv Neural Inf Process Syst. 2002. http://papers.nips.cc/paper/2340-an-impossibility-theorem-forclustering. Accessed on 08 July 2014.
  • [25]Lange T, Roth V, Braun ML, Buhmann JM: Stability-based validation of clustering solutions. Neural Comput 2004, 16(6):1299-1323.
  • [26]de Souto MC, Costa IG, de Araujo DS, Ludermir TB, Schliep A: Clustering cancer gene expression data: a comparative study. BMC Bioinformatics 2008, 9:497. BioMed Central Full Text
  • [27]Ben-David S, von Luxburg U, Pal D: A sober look at clustering stability. In Learning theory: lecture notes in computer science. Springer, Berlin; 2006:5-19.
  • [28]de Bruin EC, McGranahan N, Mitter R, Salm M, Wedge DC, Yates L, Jamal-Hanjani M, Shafi S, Murugaesu N, Rowan AJ, et al.: Spatial and temporal diversity in genomic instability processes defines lung cancer evolution. Science 2014, 346(6206):251-256.
  • [29]Gerlinger M, Horswell S, Larkin J, Rowan AJ, Salm MP, Varela I, Fisher R, McGranahan N, Matthews N, Santos CR, et al.: Genomic architecture and evolution of clear cell renal cell carcinomas defined by multiregion sequencing. Nat Genet 2014, 46(3):225-233.
  • [30]Zhang J, Fujimoto J, Zhang J, Wedge DC, Song X, Zhang J, Seth S, Chow CW, Cao Y, Gumbs C, et al.: Intratumor heterogeneity in localized lung adenocarcinomas delineated by multiregion sequencing. Science 2014, 346(6206):256-259.
  • [31]Wang Y, Waters J, Leung ML, Unruh A, Roh W, Shi X, Chen K, Scheet P, Vattathil S, Liang H, et al.: Clonal evolution in breast cancer revealed by single nucleus genome sequencing. Nature 2014, 512(7513):155-160.
  • [32]Ting DT, Wittner BS, Ligorio M, Vincent Jordan N, Shah AM, Miyamoto DT, Aceto N, Bersani F, Brannigan BW, Xega K, et al.: Single-cell RNA sequencing identifies extracellular matrix gene expression by pancreatic circulating tumor cells. Cell reports 2014, 8(6):1905-1918.
  • [33]Polyak K: Heterogeneity in breast cancer. J Clin Invest 2011, 121(10):3786-3788.
  • [34]Zeisel A, Munoz-Manchado AB, Codeluppi S, Lonnerberg P, La Manno G, Jureus A, Marques S, Munguba H, He L, Betsholtz C, et al.: Brain structure. Cell types in the mouse cortex and hippocampus revealed by single-cell RNA-seq. Science 2015, 347(6226):1138-1142.
  • [35]Oesper L, Mahmoody A, Raphael BJ: THetA: inferring intra-tumor heterogeneity from high-throughput DNA sequencing data. Genome Biol 2013, 14(7):R80. BioMed Central Full Text
  • [36]Roth A, Khattra J, Yap D, Wan A, Laks E, Biele J, Ha G, Aparicio S, Bouchard-Cote A, Shah SP: PyClone: statistical inference of clonal population structure in cancer. Nat Methods 2014, 11(4):396-398.
  • [37]Pritchard JK, Stephens M, Donnelly P: Inference of population structure using multilocus genotype data. Genetics 2000, 155(2):945-959.
  • [38]Bryc K, Auton A, Nelson MR, Oksenberg JR, Hauser SL, Williams S, Froment A, Bodo JM, Wambebe C, Tishkoff SA, et al.: Genome-wide patterns of population structure and admixture in West Africans and African Americans. Proc Natl Acad Sci U S A 2010, 107(2):786-791.
  • [39]Hong WS, Shpak M, Townsend JP: Inferring the origin of metastases from cancer phylogenies. Cancer Res 2015, 75:4021-5.
  • [40]Niknafs N, Beleva-Guthrie V, Naiman DQ, Karchin R: Subclonal hierarchy inference from somatic mutations: automatic reconstruction of cancer evolutionary trees from multi-region next generation sequencing. PLoS computational biology 2015., 11(10) Article ID e1004416
  • [41]Greaves M, Maley CC: Clonal evolution in cancer. Nature 2012, 481(7381):306-313.
  • [42]Burrell RA, McGranahan N, Bartek J, Swanton C: The causes and consequences of genetic heterogeneity in cancer evolution. Nature 2013, 501(7467):338-345.
  • [43]Ogino S, Fuchs CS, Giovannucci E: How many molecular subtypes? Implications of the unique tumor principle in personalized medicine. Expert Rev Mol Diagn 2012, 12(6):621-628.
  • [44]Ding L, Ellis MJ, Li S, Larson DE, Chen K, Wallis JW, Harris CC, McLellan MD, Fulton RS, Fulton LL, et al.: Genome remodelling in a basal-like breast cancer metastasis and xenograft. Nature 2010, 464(7291):999-1005.
  • [45]Ding L, Ley TJ, Larson DE, Miller CA, Koboldt DC, Welch JS, Ritchey JK, Young MA, Lamprecht T, McLellan MD, et al.: Clonal evolution in relapsed acute myeloid leukaemia revealed by whole-genome sequencing. Nature 2012, 481(7382):506-510.
  • [46]Hanahan D, Weinberg RA: Hallmarks of cancer: the next generation. Cell 2011, 144(5):646-674.
  • [47]Greaves M: Evolutionary determinants of cancer. Cancer Discov 2015, 5(8):806-820.
  • [48]Vogelstein B, Papadopoulos N, Velculescu VE, Zhou S, Diaz LA Jr, Kinzler KW: Cancer genome landscapes. Science 2013, 339(6127):1546-1558.
  • [49]Li B, Senbabaoglu Y, Peng W, Yang M-l, Xu J, Li JZ: Genomic estimates of aneuploid content in glioblastoma multiforme and improved classification. Clin Cancer Res 2012, 18(20):5595-5605.
  • [50]Bhat KP, Balasubramaniyan V, Vaillant B, Ezhilarasan R, Hummelink K, Hollingsworth F, Wani K, Heathcock L, James JD, Goodman LD, et al.: Mesenchymal differentiation mediated by NF-kappaB promotes radiation resistance in glioblastoma. Cancer Cell 2013, 24(3):331-346.
  • [51]Ozawa T, Riester M, Cheng YK, Huse JT, Squatrito M, Helmy K, Charles N, Michor F, Holland EC: Most human non-GCIMP glioblastoma subtypes evolve from a common proneural-like precursor glioma. Cancer Cell 2014, 26(2):288-300.
  • [52]Holderegger R, Kamm U, Gugerli F: Adaptive vs. neutral genetic diversity: implications for landscape genetics. Landscape Ecol 2006, 21(6):797-807.
  • [53]Miller CA, White BS, Dees ND, Griffith M, Welch JS, Griffith OL, Vij R, Tomasson MH, Graubert TA, Walter MJ, et al.: SciClone: inferring clonal architecture and tracking the spatial and temporal patterns of tumor evolution. PLoS Comput Biol 2014, 10(8):e1003665.
  • [54]Bouaziz M, Paccard C, Guedj M, Ambroise C: SHIPS: spectral hierarchical clustering for the inference of population structure in genetic studies. PLoS One 2012, 7(10):e45685.
  • [55]TCGA: Comprehensive molecular portraits of human breast tumours Nature 2012, 490(7418):61-70.
  • [56]Parker JS, Mullins M, Cheang MCU, Leung S, Voduc D, Vickery T, Davies S, Fauron C, He X, Hu Z, et al.: Supervised risk predictor of breast cancer based on intrinsic subtypes. J Clin Oncol 2009, 27(8):1160-1167.
  • [57]Kirk P, Griffin JE, Savage RS, Ghahramani Z, Wild DL: Bayesian correlated clustering to integrate multiple datasets. Bioinformatics 2012, 28(24):3290-3297.
  • [58]Lock EF, Hoadley KA, Marron JS, Nobel AB: Joint and individual variation explained (JIVE) for integrated analysis of multiple data types. Ann Appl Stat 2013, 7(1):523-542.
  • [59]Shen R, Wang S, Mo Q: Sparse integrative clustering of multiple omics data sets. Ann Appl Stat 2013, 7(1):269-294.
  • [60]Wang B, Mezlini AM, Demir F, Fiume M, Tu Z, Brudno M, Haibe-Kains B, Goldenberg A: Similarity network fusion for aggregating data types on a genomic scale. Nat Methods 2014, 11(3):333-337.
  文献评价指标  
  下载次数:5次 浏览次数:18次