期刊论文详细信息
Journal of Neurodevelopmental Disorders
Divergent structural brain abnormalities between different genetic subtypes of children with Prader–Willi syndrome
Anita C Hokken-Koelega2  Aad van der Lugt1  Marcus N Schmidt3  Tonya White1  Akvile Lukoshe2 
[1] Department of Radiology, Erasmus Medical Center Rotterdam, Postbus 2040, Rotterdam 3000 CA, The Netherlands;Department of Pediatrics, Erasmus Medical Center Rotterdam – Sophia Children’s Hospital Rotterdam, Postbus 2060, Rotterdam 3000, CB, The Netherlands;Department of Child and Adolescent Psychiatry, Erasmus Medical Center Rotterdam – Sophia Children’s Hospital, Postbus 2060, Rotterdam 3000 CB, The Netherlands
关键词: Structural MRI;    Chromosome 15q11-q13;    Neurodevelopmental disorder;    Prader–Willi syndrome;   
Others  :  804630
DOI  :  10.1186/1866-1955-5-31
 received in 2013-06-17, accepted in 2013-10-02,  发布年份 2013
PDF
【 摘 要 】

Background

Prader–Willi syndrome (PWS) is a complex neurogenetic disorder with symptoms that indicate not only hypothalamic, but also a global, central nervous system (CNS) dysfunction. However, little is known about developmental differences in brain structure in children with PWS. Thus, our aim was to investigate global brain morphology in children with PWS, including the comparison between different genetic subtypes of PWS. In addition, we performed exploratory cortical and subcortical focal analyses.

Methods

High resolution structural magnetic resonance images were acquired in 20 children with genetically confirmed PWS (11 children carrying a deletion (DEL), 9 children with maternal uniparental disomy (mUPD)), and compared with 11 age- and gender-matched typically developing siblings as controls. Brain morphology measures were obtained using the FreeSurfer software suite.

Results

Both children with DEL and mUPD showed smaller brainstem volume, and a trend towards smaller cortical surface area and white matter volume. Children with mUPD had enlarged lateral ventricles and larger cortical cerebrospinal fluid (CSF) volume. Further, a trend towards increased cortical thickness was found in children with mUPD. Children with DEL had a smaller cerebellum, and smaller cortical and subcortical grey matter volumes. Focal analyses revealed smaller white matter volumes in left superior and bilateral inferior frontal gyri, right cingulate cortex, and bilateral precuneus areas associated with the default mode network (DMN) in children with mUPD.

Conclusions

Children with PWS show signs of impaired brain growth. Those with mUPD show signs of early brain atrophy. In contrast, children with DEL show signs of fundamentally arrested, although not deviant brain development and presented few signs of cortical atrophy. Our results of global brain measurements suggest divergent neurodevelopmental patterns in children with DEL and mUPD.

【 授权许可】

   
2013 Lukoshe et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20140708063656566.pdf 2191KB PDF download
Figure 2. 74KB Image download
Figure 1. 77KB Image download
【 图 表 】

Figure 1.

Figure 2.

【 参考文献 】
  • [1]Soni S, Whittington J, Holland AJ, Webb T, Maina EN, Boer H, Clarke D: The phenomenology and diagnosis of psychiatric illness in people with Prader-Willi syndrome. Psychol Med 2008, 38:1505-1514.
  • [2]Cassidy SB, Forsythe M, Heeger S, Nicholls RD, Schork N, Benn P, Schwartz S: Comparison of phenotype between patients with Prader-Willi syndrome due to deletion 15q and uniparental disomy 15. Am J Med Genet 1997, 68:433-440.
  • [3]Ledbetter DH, Riccardi VM, Airhart SD, Strobel RJ, Keenan BS, Crawford JD: Deletions of chromosome 15 as a cause of the prader-willi syndrome. N Engl J Med 1981, 304:325-329.
  • [4]Nicholls RD, Knoll JHM, Butler MG, Karam S, Lalande M: Genetic imprinting suggested by maternal heterodisomy in non-deletion Prader-Willi syndrome. Nature 1989, 342:281-285.
  • [5]Buiting K, Saitoh S, Gross S, Dittrich B, Schwartz S, Nicholls RD, Horsthemke B: Inherited microdeletions in the Angelman and Prader-Willi syndromes define an imprinting centre on human chromosome 15. Nat Genet 1995, 9:395-400.
  • [6]Perala J, Suvisaari J, Saarni SI, Kuoppasalmi K, Isometsa E, Pirkola S, Partonen T, Tuulio-Henriksson A, Hintikka J, Kieseppa T: Lifetime prevalence of psychotic and bipolar I disorders in a general population. Arch Gen Psychiatry 2007, 64:19.
  • [7]Soni S, Whittington J, Holland AJ, Webb T, Maina E, Boer H, Clarke D: The course and outcome of psychiatric illness in people with Prader-Willi syndrome: implications for management and treatment. J Intellect Disabil Res 2007, 51:32-42.
  • [8]Stefansson H, Rujescu D, Cichon S, Pietiläinen OP, Ingason A, Steinberg S, Fossdal R, Sigurdsson E, Sigmundsson T, Buizer-Voskamp JE, Hansen T, Jakobsen KD, Muglia P, Francks C, Matthews PM, Gylfason A, Halldorsson BV, Gudbjartsson D, Thorgeirsson TE, Sigurdsson A, Jonasdottir A, Jonasdottir A, Bjornsson A, Mattiasdottir S, Blondal T, Haraldsson M, Magnusdottir BB, Giegling I, Möller HJ, Hartmann A: Large recurrent microdeletions associated with schizophrenia. Nature 2008, 455:232-236.
  • [9]Veltman MWM, Craig EE, Bolton PF: Autism spectrum disorders in Prader-Willi and Angelman syndromes: a systematic review. Psychiatr Genet 2005, 15:243.
  • [10]Baird G, Simonoff E, Pickles A, Chandler S, Loucas T, Meldrum D, Charman T: Prevalence of disorders of the autism spectrum in a population cohort of children in South Thames: the Special Needs and Autism Project (SNAP). Lancet 2006, 368:210-215.
  • [11]Moreno-De-Luca D, Sanders SJ, Willsey AJ, Mulle JG, Lowe JK, Geschwind DH, State MW, Martin CL, Ledbetter DH: Using large clinical data sets to infer pathogenicity for rare copy number variants in autism cohorts. Mol Psychiatry 2013, 18:1090-1095.
  • [12]Sullivan PF, Magnusson C, Reichenberg A, Boman M, Dalman C, Davidson M, Fruchter E, Hultman CM, Lundberg M, Långström N, Weiser M, Svensson AC, Lichtenstein P: Family history of schizophrenia and bipolar disorder as risk factors for autism. Arch Gen Psychiatry 2012, 69:1099-1103.
  • [13]Carroll LS, Owen MJ: Genetic overlap between autism, schizophrenia and bipolar disorder. Genome Med 2009, 1:102. BioMed Central Full Text
  • [14]Ogura K, Fujii T, Abe N, Hosokai Y, Shinohara M, Takahashi S, Mori E: Small gray matter volume in orbitofrontal cortex in prader-willi syndrome: a voxel-based MRI study. Hum Brain Mapp 2011, 32:1059-1066.
  • [15]Honea RA, Holsen LM, Lepping RJ, Perea R, Butler MG, Brooks WM, Savage CR: The neuroanatomy of genetic subtype differences in Prader-Willi syndrome. Am J Med Genet B Neuropsychiatr Genet 2012, 159:243-253.
  • [16]Miller JL, Couch JA, Schmalfuss I, He G, Liu Y, Driscoll DJ: Intracranial abnormalities detected by three-dimensional magnetic resonance imaging in Prader-Willi syndrome. Am J Med Genet A 2007, 143:476-483.
  • [17]Festen DAM, Wevers M, Lindgren AC, Böhm B, Otten BJ, Wit JM, Duivenvoorden HJ, Hokken Koelega AC: Mental and motor development before and during growth hormone treatment in infants and toddlers with Prader–Willi syndrome. Clin Endocrinol (Oxf) 2008, 68:919-925.
  • [18]Van-Haasen P, De-Bruyn E, Pijl Y, Poortinga Y, Lutje-Spelberg H, Vander Steene G, Coetsier P, Spoelders-Claes R, Stinissen J: Wechsler intelligence scale for children-revised, Dutch version. Lisse, The Netherlands: Swets and Zetlinger BV; 1986.
  • [19]Siemensma EP, Tummers-de Lind van Wijngaarden RF, Festen DA, Troeman ZC, Van Alfen-van der Velden AA, Otten BJ, Rotteveel J, Odink RJ, Bindels-de Heus GC, Van-Leeuwen M, Haring DA, Oostdijk W, Bocca G, Mieke Houdijk EC, Van-Trotsenburg AS, Hoorweg-Nijman JJ, Van-Wieringen H, Vreuls RC, Jira PE, Schroor EJ, Van-Pinxteren-Nagler E, Willem Pilon J, Lunshof LB, Hokken-Koelega AC: Beneficial effects of growth hormone treatment on cognition in children with Prader-Willi syndrome: a randomized controlled trial and longitudinal study. J Clin Endocrinol Metab 2012, 97:2307-2314.
  • [20]White T, Marroun H, Nijs I, Schmidt M, Lugt A, Wielopolki P, Jaddoe VV, Hofman A, Krestin G, Tiemeier H, Verhulst F: Pediatric population-based neuroimaging and the generation R study: the intersection of developmental neuroscience and epidemiology. Eur J Epidemiol 2013, 28:99-111.
  • [21]Dale AM, Fischl B, Sereno MI: Cortical surface-based analysis: i segmentation and surface reconstruction. Neuroimage 1999, 9:179-194.
  • [22]Segonne F, Dale A, Busa E, Glessner M, Salat D, Hahn H, Fischl B: A hybrid approach to the skull stripping problem in MRI. Neuroimage 2004, 22:1060-1075.
  • [23]Fischl B, Salat DH, van der-Kouwe AJW, Makris N, Segonne F, Quinn BT, Dale AM: Sequence-independent segmentation of magnetic resonance images. Neuroimage 2004, 23:S69-S84.
  • [24]Fischl B, Salat DH, Busa E, Albert M, Dieterich M, Haselgrove C, van der-Kouwe A, Killiany R, Kennedy D, Klaveness S: Whole brain segmentation: automated labeling of neuroanatomical structures in the human brain. Neuron 2002, 33:341-355.
  • [25]Sled JG, Zijdenbos AP, Evans AC: A nonparametric method for automatic correction of intensity nonuniformity in MRI data. IEEE Trans Med Imaging 1998, 17:87-97.
  • [26]Fischl B, Liu A, Dale AM: Automated manifold surgery: constructing geometrically accurate and topologically correct models of the human cerebral cortex. IEEE Trans Med Imaging 2001, 20:70-80.
  • [27]Desikan RS, Ségonne F, Fischl B, Quinn BT, Dickerson BC, Blacker D, Buckner RL, Dale AM, Maguire RP, Hyman BT: An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest. Neuroimage 2006, 31:968-980.
  • [28]Fischl B, Dale AM: Measuring the thickness of the human cerebral cortex from magnetic resonance images. Proc Natl Acad Sci 2000, 97:11050-11055.
  • [29]Rosas H, Liu A, Hersch S, Glessner M, Ferrante R, Salat D, van Der-Kouwe A, Jenkins B, Dale A, Fischl B: Regional and progressive thinning of the cortical ribbon in Huntington’s disease. Neurology 2002, 58:695-701.
  • [30]Han X, Jovicich J, Salat D, van der-Kouwe A, Quinn B, Czanner S, Busa E, Pacheco J, Albert M, Killiany R: Reliability of MRI-derived measurements of human cerebral cortical thickness: the effects of field strength, scanner upgrade and manufacturer. Neuroimage 2006, 32:180-194.
  • [31]Rice D, Barone S Jr: Critical periods of vulnerability for the developing nervous system: evidence from humans and animal models. Environ Health Perspect 2000, 108:511.
  • [32]Yakovlev P, Lecours A: The myelogenetic cycles of regional maturation of the brain. In Regional development of the brain in early life. Edited by Minkowski A. Oxford: Blackwell; 1967:3-70.
  • [33]Feldman JL, Ellenberger HH: Central coordination of respiratory and cardiovascular control in mammals. Annu Rev Physiol 1988, 50:593-606.
  • [34]Snyderman NL, Johnson JT, Muller M, Thearle PB: Brainstem evoked potentials in adult sleep apnea. Ann Otol Rhinol Laryngol 1982, 91:597-598.
  • [35]Festen DAM, De-Weerd AW, van den-Bossche RAS, Joosten K, Hoeve H, Hokken-Koelega AC: Sleep-related breathing disorders in prepubertal children with Prader-Willi syndrome and effects of growth hormone treatment. J Clin Endocrinol Metab 2006, 91:4911-4915.
  • [36]Hertz G, Cataletto M, Feinsilver SH, Angulo M: Sleep and breathing patterns in patients with Prader Willi syndrome (PWS): effects of age and gender. Sleep 1993, 16:366.
  • [37]Pagliardini S, Ren J, Wevrick R, Greer JJ: Developmental abnormalities of neuronal structure and function in prenatal mice lacking the prader-willi syndrome gene necdin. Am J Pathol 2005, 167:175-191.
  • [38]Pujol J, López-Sala A, Sebastián-Gallés N, Deus J, Cardoner N, Soriano-Mas C, Moreno A, Sans A: Delayed myelination in children with developmental delay detected by volumetric MRI. Neuroimage 2004, 22:897-903.
  • [39]Carson MJ, Behringer RR, Brinster RL, McMorris FA: Insulin-like growth factor I increases brain growth and central nervous system myelination in transgenic mice. Neuron 1993, 10:729-740.
  • [40]Bernal J, Nunez J: Thyroid hormones and brain development. Eur J Endocrinol 1995, 133:390-398.
  • [41]Festen DAM, Visser TJ, Otten BJ, Wit JM, Duivenvoorden HJ, Hokken-Koelega AC: Thyroid hormone levels in children with Prader–Willi syndrome before and during growth hormone treatment. Clin Endocrinol (Oxf) 2007, 67:449-456.
  • [42]Prayer D, Kasprian G, Krampl E, Ulm B, Witzani L, Prayer L, Brugger PC: MRI of normal fetal brain development. Eur J Radiol 2006, 57:199-216.
  • [43]Kempton MJ, Stahl D, Williams SCR, DeLisi LE: Progressive lateral ventricular enlargement in schizophrenia: a meta-analysis of longitudinal MRI studies. Schizophr Res 2010, 120:54-62.
  • [44]Steen RG, Mull C, McClure R, Hamer RM, Lieberman JA: Brain volume in first-episode schizophrenia: systematic review and meta-analysis of magnetic resonance imaging studies. Br J Psychiatry 2006, 188:510-518.
  • [45]McDonald C, Grech A, Toulopoulou T, Schulze K, Chapple B, Sham P, Walshe M, Sharma T, Sigmundsson T, Chitnis X, Murray RM: Brain volumes in familial and non-familial schizophrenic probands and their unaffected relatives. Am J Med Genet 2002, 114:616-625.
  • [46]Campbell LE, Daly E, Toal F, Stevens A, Azuma R, Catani M, Ng V, Van-Amelsvoort T, Chitnis X, Cutter W, Murphy DG, Murphy KC: Brain and behaviour in children with 22q11.2 deletion syndrome: a volumetric and voxel-based morphometry MRI study. Brain 2006, 129:1218-1228.
  • [47]Edmiston EE, Wang F, Kalmar JH, Womer FY, Chepenik LG, Pittman B, Gueorguieva R, Hur E, Spencer L, Staib LH, Constable RT, Fulbright RK, Papademetris X, Blumberg HP: Lateral ventricle volume and psychotic features in adolescents and adults with bipolar disorder. Psychiatry Res 2011, 194:400-402.
  • [48]Rakic P: Principles of neural cell migration. Experientia 1990, 46:882-891.
  • [49]Hill EL, Frith U: Understanding autism: insights from mind and brain. Philos Trans R Soc Lond B Biol Sci 2003, 358:281-289.
  • [50]Holland AJ, Whittington JE, Butler J, Webb T, Boer H, Clarke D: Behavioural phenotypes associated with specific genetic disorders: evidence from a population-based study of people with Prader-Willi syndrome. Psychol Med 2003, 33:141-153.
  • [51]Hogart A, Leung KN, Wang NJ, Wu DJ, Driscoll J, Vallero RO, Schanen NC, La-Salle JM: Chromosome 15q11-q13 duplication syndrome brain reveals epigenetic alterations in gene expression not predicted from copy number. J Med Genet 2009, 46:86-93.
  • [52]Lu Y, Wang F, Li Y, Ferris J, Lee JA, Gao FB: The Drosophila homologue of the Angelman syndrome ubiquitin ligase regulates the formation of terminal dendritic branches. Hum Mol Genet 2009, 18:454-462.
  • [53]Greer PL, Hanayama R, Bloodgood BL, Mardinly AR, Lipton DM, Flavell SW, Kim TK, Griffith EC, Waldon Z, Maehr R, Ploegh HL, Chowdhury S, Worley PF, Steen J, Greenberg ME: The Angelman Syndrome protein Ube3A regulates synapse development by ubiquitinating arc. Cell 2010, 140:704-716.
  • [54]Mulert C, Pogarell O, Juckel G, Rujescu D, Giegling I, Rupp D, Mavrogiorgou P, Bussfeld P, Gallinat J, Möller HJ, Hegerl U: The neural basis of the P300 potential. Eur Arch Psychiatry Clin Neurosci 2004, 254:190-198.
  • [55]Fransson P, Marrelec G: The precuneus/posterior cingulate cortex plays a pivotal role in the default mode network: evidence from a partial correlation network analysis. Neuroimage 2008, 42:1178-1184.
  • [56]Greicius M: Resting-state functional connectivity in neuropsychiatric disorders. Curr Opin Neurol 2008, 21:424-430.
  • [57]Spreng RN, Grady CL: Patterns of brain activity supporting autobiographical memory, prospection, and theory of mind, and their relationship to the default mode network. J Cogn Neurosci 2009, 22:1112-1123.
  • [58]Uddin LQ, Kelly A, Biswal BB, Margulies DS, Shehzad Z, Shaw D, Ghaffari M, Rotrosen J, Adler LA, Castellanos FX: Network homogeneity reveals decreased integrity of default-mode network in ADHD. J Neurosci Methods 2008, 169:249-254.
  • [59]Assaf M, Jagannathan K, Calhoun VD, Miller L, Stevens MC, Sahl R, O’Boyle JG, Schultz RT, Pearlson GD: Abnormal functional connectivity of default mode sub-networks in autism spectrum disorder patients. Neuroimage 2010, 53:247-256.
  • [60]Whitfield-Gabrieli S, Thermenos HW, Milanovic S, Tsuang MT, Faraone SV, McCarley RW, Shenton ME, Green AI, Nieto-Castanon A, LaViolette P, Wojcik J, Gabrieli JD, Seidman LJ: Hyperactivity and hyperconnectivity of the default network in schizophrenia and in first-degree relatives of persons with schizophrenia. Proc Natl Acad Sci U S A 2009, 106:1279-1284.
  • [61]Stauder JE, Boer H, Gerits RH, Tummers A, Whittington J, Curfs LM: Differences in behavioural phenotype between parental deletion and maternal uniparental disomy in Prader-Willi syndrome: an ERP study. Clin Neurophysiol 2005, 116:1464-1470.
  • [62]Milner KM, Craig EE, Thompson RJ, Veltman MW, Thomas NS, Roberts S, Bellamy M, Curran SR, Sporikou CM, Bolton PF: Prader-Willi syndrome: intellectual abilities and behavioural features by genetic subtype. J Child Psychol Psychiatry 2005, 46:1089-1096.
  • [63]Woodcock KA, Oliver C, Humphreys GW: Task-switching deficits and repetitive behaviour in genetic neurodevelopmental disorders: data from children with Prader-Willi syndrome chromosome 15 q11-q13 deletion and boys with Fragile X syndrome. Cogn Neuropsychol 2009, 26:172-194.
  • [64]Jung WH, Jang JH, Shin NY, Kim SN, Choi C-H, An SK, Kwon JS: Regional brain atrophy and functional disconnection in Broca’s area in individuals at ultra-high risk for psychosis and schizophrenia. PLoS One 2012, 7:e51975.
  • [65]Wallace GL, Eric Schmitt J, Lenroot R, Viding E, Ordaz S, Rosenthal MA, Molloy EA, Clasen LS, Kendler KS, Neale MC, Giedd JN: A pediatric twin study of brain morphometry. J Child Psychol Psychiatry 2006, 47:987-993.
  文献评价指标  
  下载次数:10次 浏览次数:8次