期刊论文详细信息
Journal of Neuroinflammation
Immunomodulation targeting of both Aβ and tau pathological conformers ameliorates Alzheimer’s disease pathology in TgSwDI and 3xTg mouse models
Thomas Wisniewski4  Pankaj Mehta2  Yanjie Sun1  Yong Ji3  Kinlung Wong1  Daniel Peyser1  Krystal Herline1  Fernando Goñi1 
[1] Department of Neurology, New York University School of Medicine, 550 First Avenue, New York, NY 10016, USA;New York State Institute for Basic Research in Developmental Disabilities, 1050 Forest Hill Rd., Staten Island, NY 10314, USA;Department of Neurology, Tianjin Huanhu Hospital, Tianjin, China;New York University School of Medicine, Alexandria ERSP, Rm 802, 450 East 29th Street, New York, NY 10016, USA
关键词: transgenic mice;    vaccination;    amyloid;    β-sheet conformation;    British amyloidosis;    Alzheimer’s disease;   
Others  :  834584
DOI  :  10.1186/1742-2094-10-150
 received in 2013-10-21, accepted in 2013-11-23,  发布年份 2013
PDF
【 摘 要 】

Background

Central to the pathogenesis of Alzheimer’s disease (AD) and many other neurodegenerative diseases is the conformational change of a normal self-protein into toxic oligomeric species and amyloid deposits. None of these disorders have an effective therapy, but immunization approaches hold great promise. We have previously shown that active immunization with a novel peptide when polymerized into a stable oligomeric conformation, pBri, induced a humoral immune response to toxic Aβ species in an AD model, APP/PS1 transgenic (Tg) mice, reducing plaque deposits. pBri is a glutaraldehyde polymerized form of the carboxyl fragment of an amyloidogenic protein, which is deposited in the brains of patients with a rare autosomal dominant disease due to a missense mutation in a stop codon, resulting in the translation of an intronic sequence, with no known sequence homology to any mammalian protein.

Methods

In the current study we tested whether pBri-peptide-based immunomodulation is effective at reducing both vascular amyloid deposits and tau-related pathology using TgSwDI mice with extensive congophilic angiopathy and 3xTg mice with tau pathology.

Results

Our results indicate that this immunomodulation approach, which produces a humoral response to proteins in a pathological conformation, is effective at reducing both Aβ and tau-related pathologies.

Conclusions

This immunomodulatory approach has the advantage of using a non-self-immunogen that is less likely to be associated with autoimmune toxicity. Furthermore we found that it is able to target all the cardinal features of AD concurrently.

【 授权许可】

   
2013 Goñi et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20140715081100159.pdf 2575KB PDF download
Figure 21. 65KB Image download
Figure 20. 32KB Image download
Figure 19. 39KB Image download
Figure 18. 42KB Image download
Figure 17. 41KB Image download
Figure 16. 57KB Image download
Figure 15. 57KB Image download
Figure 14. 73KB Image download
Figure 13. 68KB Image download
Figure 12. 44KB Image download
Figure 11. 45KB Image download
Figure 10. 48KB Image download
Figure 9. 22KB Image download
Figure 8. 34KB Image download
Figure 7. 45KB Image download
Figure 6. 46KB Image download
Figure 5. 42KB Image download
Figure 2. 49KB Image download
Figure 3. 37KB Image download
Figure 2. 45KB Image download
Figure 1. 45KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 2.

Figure 5.

Figure 6.

Figure 7.

Figure 8.

Figure 9.

Figure 10.

Figure 11.

Figure 12.

Figure 13.

Figure 14.

Figure 15.

Figure 16.

Figure 17.

Figure 18.

Figure 19.

Figure 20.

Figure 21.

【 参考文献 】
  • [1]Gaugler J, James B, Johnson T, Scholz K, Weuve J: Alzheimer’s Disease Facts and Figures 2013. Alzheimer’s Disease Association; 2013. on line source: http://www.alz.org/downloads/facts_figures_2013.pdf webcite
  • [2]Ozudogru SN, Lippa CF: Disease modifying drugs targeting beta-amyloid. Am J Alzheimers Dis Other Demen 2012, 27:296-300.
  • [3]Wisniewski T: Active immunotherapy for Alzheimer’s disease. Lancet Neurol 2012, 11:571-572.
  • [4]Grill JD, Cummings JL: Current therapeutic targets for the treatment of Alzheimer’s disease. Expert Rev Neurother 2010, 10:711-728.
  • [5]Morgan D: Immunotherapy for Alzheimer’s disease. J Intern Med 2011, 269:54-63.
  • [6]Huang Y, Mucke L: Alzheimer mechanisms and therapeutic strategies. Cell 2012, 148:1204-1222.
  • [7]Nelson PT, Alafuzoff I, Bigio EH, Bouras C, Braak H, Cairns N, Davies P, Tredici KD, Duyckaerts C, Frosch MP, Hof PR, Hulette C, Hyman BT, Iwatsubo T, Jellinger KA, Jicha GA, Kovari E, Kukull WA, Leverenz JB, Love S, Mackenzie IR, Mann DM, Masliah E, McKee A, Montine TJ, Morris JC, Schneider JA, Sonnen JA, Thal DR, Trojanowski JQ, Troncoso JC, Wisniewski T, Woltjer RL, Beach TG: Correlation of Alzheimer’s disease neuropathologic changes with cognitive status: a review of the literature. J Neuropath Exp Neurol 2012, 71:362-381.
  • [8]Hefti F, Goure WF, Jerecic J, Iverson KS, Walicke PA, Krafft GA: The case for soluble Abeta oligomers as a drug target in Alzheimer’s disease. Trends Pharmacol Sci 2013, 34:261-266.
  • [9]Castillo-Carranza DL, Lasagna-Reeves CA, Kayed R: Tau aggregates as immunotherapeutic targets. Front Biosci (Schol Ed) 2013, 5:426-438.
  • [10]Ashe KH, Aguzzi A: Prions, prionoids and pathogenic proteins in Alzheimer disease. Prion 2013, 7:55-59.
  • [11]Wisniewski T, Boutajangout A: Immunotherapeutic approaches for Alzheimer’s disease in transgenic mouse models. Brain Struct Funct 2010, 214:201-218.
  • [12]Wisniewski T, Chabalgoity JA, Goni F: Is vaccination against transmissible spongiform encephalopathies feasible? OIE Sci Tech Rev 2007, 26:243-251.
  • [13]Mullane K, Williams M: Alzheimer’s therapeutics: continued clinical failures question the validity of the amyloid hypothesis – but what lies beyond? Biochem Pharmacol 2013, 85:289-305.
  • [14]Vidal R, Frangione B, Rostagno A, Mead S, Revesz T, Plant G, Ghiso J: A stop-codon mutation in the BRI gene associated with familial British dementia. Nature 1999, 399:776-781.
  • [15]Rostagno A, Tomidokoro Y, Lashley T, Ng D, Plant G, Holton J, Frangione B, Revesz T, Ghiso J: Chromosome 13 dementias. Cell Mol Life Sci 2005, 62:1814-1825.
  • [16]Goni F, Prelli F, Ji Y, Scholtzova H, Yang J, Sun Y, Liang FX, Kascsak R, Kascsak R, Mehta P, Wisniewski T: Immunomodulation targeting abnormal protein conformation reduces pathology in a mouse model of Alzheimer’s disease. PLoS ONE 2010, 5:e13391.
  • [17]Schnabel J: Vaccines: chasing the dream. Nature 2011, 475:S18-S19.
  • [18]Davis J, Xu F, Deane R, Romanov G, Previti ML, Zeigler K, Zlokovic BV, van Nostrand WE: Early-onset and robust cerebral microvascular accumulation of amyloid beta-protein in transgenic mice expressing low levels of a vasculotropic Dutch/Iowa mutant form of amyloid beta-protein precursor. J Biol Chem 2004, 279:20296-20306.
  • [19]Oddo S, Caccamo A, Shepherd JD, Murphy MP, Golde TE, Kayed R, Metherate R, Mattson MP, Akbari Y, LaFerla FM: Triple-transgenic model of Alzheimer’s disease with plaques and tangles: intracellular Aβ and synaptic dysfunction. Neuron 2003, 39:409-421.
  • [20]Liu S, Breitbart A, Sun Y, Mehta PD, Boutajangout A, Scholtzova H, Wisniewski T: Blocking the apolipoprotein E/amyloid β interaction in triple transgenic mice ameliorates Alzheimer’s disease related amyloid β and tau pathology. J.Neurochem 2013. epub October 10
  • [21]Miao J, Xu F, Davis J, Otte-Holler I, Verbeek MM, van Nostrand WE: Cerebral microvascular amyloid beta protein deposition induces vascular degeneration and neuroinflammation in transgenic mice expressing human vasculotropic mutant amyloid beta precursor protein. Am J Pathol 2005, 167:505-515.
  • [22]Yang J, Ji Y, Mehta P, Bates KA, Sun Y, Wisniewski T: Blocking the apolipoprotein E/amyloid β interaction reduces fibrillar vascular amyloid deposition and cerebral microhemorrhages in TgSwDI mice. J Alzheimers Dis 2011, 24:269-285.
  • [23]Sadowski M, Pankiewicz J, Scholtzova H, Mehta P, Prelli F, Quartermain D, Wisniewski T: Blocking the apolipoprotein E/amyloid β interaction reduces the parenchymal and vascular amyloid-b deposition and prevents memory deficit in AD transgenic mice. Proc Natl Acad Sci USA 2006, 103:18787-18792.
  • [24]Scholtzova H, Kascsak RJ, Bates KA, Boutajangout A, Kerr DJ, Meeker HC, Mehta PD, Spinner DS, Wisniewski T: Induction of Toll-like receptor 9 signaling as a method for ameliorating Alzheimer’s disease related pathology. J Neurosci 2009, 29:1846-1854.
  • [25]Otvos L Jr, Feiner L, Lang E, Szendrei GI, Goedert M, Lee VM: Monoclonal antibody PHF-1 recognizes tau protein phosphorylated at serine residues 396 and 404. J Neurosci Res 1994, 39:669-673.
  • [26]Goedert M, Jakes R, Vanmechelen E: Monoclonal antibody AT8 recognises tau protein phosphorylated at both serine 202 and threonine 205. Neurosci Lett 1995, 189:167-169.
  • [27]Kutner KC, Erlanger DM, Tsai J, Jordan B, Relkin NR: Lower cognitive performance of older football players possessing apolipoprotein E epsilon4. Neurosurgery 2000, 47:651-657.
  • [28]Morgan D, Gordon MN, Tan J, Wilcock D, Rojiani AM: Dynamic complexity of the microglial activation response in transgenic models of amyloid deposition: implications for Alzheimer therapeutics. J Neuropathol Exp Neurol 2005, 64:743-753.
  • [29]Scholtzova H, Wadghiri YZ, Douadi M, Sigurdsson EM, Li Y, Quartermain D, Banerjee P, Wisniewski T: A NMDA receptor antagonist leads to behavioral improvement and amyloid reduction in Alzheimer’s disease model transgenic mice shown by micro-magnetic resonance imaging. J Neurosci Res 2008, 86:2784-2791.
  • [30]Dhenain M, Delatour B, Walczak C, Volk A: Passive staining: a novel ex vivo MRI protocol to detect amyloid deposits in mouse models of Alzheimer’s disease. Magn Reson Med 2006, 55:687-693.
  • [31]Sanchez-Ramos J, Song S, Sava V, Catlow B, Lin X, Mori T, Cao C, Arendash GW: Granulocyte colony stimulating factor decreases brain amyloid burden and reverses cognitive impairment in Alzheimer’s mice. Neuroscience 2009, 163:55-72.
  • [32]Wisniewski T, Sigurdsson EM: Murine models of Alzheimer’s disease and their use in developing immunotherapies. Biochim Biophys Acta Mol Basis Dis 1802, 2010:847-859.
  • [33]Gordon MN, Holcomb LA, Jantzen PT, DiCarlo G, Wilcock D, Boyett KW, Connor K, Melachrino J, O'Callaghan JP, Morgan D: Time course of the development of Alzheimer-like pathology in the doubly transgenic PS1 + APP mouse. Exp Neurol 2002, 173:183-195.
  • [34]Lublin AL, Gandy S: Amyloid-beta oligomers: possible roles as key neurotoxins in Alzheimer’s disease. Mt Sinai J Med 2010, 77:43-49.
  • [35]Kuszczyk MA, Sanchez S, Pankiewicz J, Kim J, Duszczyk M, Guridi M, Asuni AA, Sullivan PM, Holtzman DM, Sadowski MJ: Blocking the interaction between apolipoprotein E and Abeta reduces intraneuronal accumulation of Abeta and inhibits synaptic degeneration. Am J Pathol 2013, 182:1750-1768.
  • [36]Fukumoto H, Tokuda T, Kasai T, Ishigami N, Hidaka H, Kondo M, Allsop D, Nakagawa M: High-molecular-weight beta-amyloid oligomers are elevated in cerebrospinal fluid of Alzheimer patients. FASEB J 2010, 24:2716-2726.
  • [37]Hunter JM, Bowers WJ, Maarouf CL, Mastrangelo MA, Daugs ID, Kokjohn TA, Kalback WM, Luehrs DC, Valla J, Beach TG, Roher AE: Biochemical and morphological characterization of the AbetaPP/PS/tau triple transgenic mouse model and its relevance to sporadic Alzheimer’s disease. J Alzheimers Dis 2011, 27:361-376.
  • [38]Ghiso J, Vidal R, Rostagno A, Miravalle L, Holton JL, Mead S, Revesz T, Plant G, Frangione B: Amyloidogenesis in familial British dementia is associated with a genetic defect on chromosome 13. Molecular Basis of Dementia 2000, 920:84-92.
  • [39]Srinivasan R, Jones EM, Liu K, Ghiso J, Marchant RE, Zagorski MG: pH-dependent amyloid and protofibril formation by the ABri peptide of familial British dementia. J Mol Biol 2003, 333:1003-1023.
  • [40]Janus C, Pearson J, McLaurin J, Mathews PM, Jiang Y, Schmidt SD, Chishti MA, Horne P, Heslin D, French J, Mount HT, Nixon RA, Mercken M, Bergeron C, Fraser PE, George-Hyslop P, Westaway D: Aβ peptide immunization reduces behavioural impairment and plaques in a model of Alzheimer’s disease. Nature 2000, 408:979-982.
  • [41]Morgan D, Diamond DM, Gottschall PE, Ugen KE, Dickey C, Hardy J, Duff K, Jantzen P, DiCarlo G, Wilcock D, Connor K, Hatcher J, Hope C, Gordon M, Arendash GW: Aβ peptide vaccination prevents memory loss in an animal model of Alzheimer’s disease. Nature 2000, 408:982-985.
  • [42]Asuni A, Boutajangout A, Scholtzova H, Knudsen E, Li Y, Quartermain D, Frangione B, Wisniewski T, Sigurdsson EM: Aβ derivative vaccination in alum adjuvant prevents amyloid deposition and does not cause brain microhemorrhages in Alzheimer’s model mice. Eur J Neurosci 2006, 24:2530-2542.
  • [43]Kool M, Fierens K, Lambrecht BN: Alum adjuvant: some of the tricks of the oldest adjuvant. J Med Microbiol 2012, 61:927-934.
  • [44]Panza F, Frisardi V, Solfrizzi V, Imbimbo BP, Logroscino G, Santamato A, Greco A, Seripa D, Pilotto A: Immunotherapy for Alzheimer’s disease: from anti-beta-amyloid to tau-based immunization strategies. Immunotherapy 2012, 4:213-238.
  • [45]Puzzo D, Privitera L, Leznik E, Fa M, Staniszewski A, Palmeri A, Arancio O: Picomolar amyloid-beta positively modulates synaptic plasticity and memory in hippocampus. J Neurosci 2008, 28:14537-14545.
  • [46]Giuffrida ML, Caraci F, Pignataro B, Cataldo S, De BP, Bruno V, Molinaro G, Pappalardo G, Messina A, Palmigiano A, Garozzo D, Nicoletti F, Rizzarelli E, Copani A: Beta-amyloid monomers are neuroprotective. J Neurosci 2009, 29:10582-10587.
  • [47]Soscia SJ, Kirby JE, Washicosky KJ, Tucker SM, Ingelsson M, Hyman B, Burton MA, Goldstein LE, Duong S, Tanzi RE, Moir RD: The Alzheimer’s disease-associated amyloid beta-protein is an antimicrobial peptide. PLoS ONE 2010, 5:e9505.
  • [48]Rosenmann H, Grigoriadis N, Karussis D, Boimel M, Touloumi O, Ovadia H, Abramsky O: Tauopathy-like abnormalities and neurologic deficits in mice immunized with neuronal tau protein. Arch Neurol 2006, 63:1459-1467.
  • [49]Gilman S, Koller M, Black RS, Jenkins L, Griffith SG, Fox NC, Eisner L, Kirby L, Boada Rovira M, Forette F, Orgogozo JM: Clinical effects of Aβ immunization (AN1792) in patients with AD in an interrupted trial. Neurol 2005, 64:1553-1562.
  • [50]Wisniewski T, Boutajangout A: Vaccination as a therapeutic approach for Alzheimer’s disease. Mt Sinai J Med 2010, 77:17-31.
  • [51]Sperling RA, Jack CR Jr, Black SE, Frosch MP, Greenberg SM, Hyman BT, Scheltens P, Carrillo MC, Thies W, Bednar MM, Black RS, Brashear HR, Grundman M, Siemers ER, Feldman HH, Schindler RJ: Amyloid-related imaging abnormalities in amyloid-modifying therapeutic trials: Recommendations from the Alzheimer’s Association Research Roundtable Workgroup. Alzheimers Dement 2011, 7:367-385.
  • [52]Zago W, Schroeter S, Guido T, Khan K, Seubert P, Yednock T, Schenk D, Gregg KM, Games D, Bard F, Kinney GG: Vascular alterations in PDAPP mice after anti-Abeta immunotherapy: Implications for amyloid-related imaging abnormalities. Alzheimers Dement 2013, 9:S105-S115.
  • [53]Jellinger KA: Prevalence and impact of cerebrovascular lesions in Alzheimer and Lewy body diseases. Neurodegener Dis 2010, 7:112-115.
  • [54]Jellinger KA: Alzheimer disease and cerebrovascular pathology: an update. J Neural Transm 2002, 109:813-836.
  • [55]Jellinger KA, Attems J: Prevalence and pathogenic role of cerebrovascular lesions in Alzheimer disease. J Neurol Sci 2005, 229–230:37-41.
  • [56]Pfeifer LA, White LR, Ross GW, Petrovitch H, Launer LJ: Cerebral amyloid angiopathy and cognitive function: the HAAS autopsy study. Neurol 2002, 58:1629-1634.
  • [57]Attems J, Quass M, Jellinger KA, Lintner F: Topographical distribution of cerebral amyloid angiopathy and its effect on cognitive decline are influenced by Alzheimer disease pathology. J Neurol Sci 2007, 257:49-55.
  • [58]Greenberg SM, Gurol ME, Rosand J, Smith EE: Amyloid angiopathy-related vascular cognitive impairment. Stroke 2004, 35:2616-2619.
  • [59]Attems J, Jellinger KA: Only cerebral capillary amyloid angiopathy correlates with Alzheimer pathology – a pilot study. Acta Neuropathol (Berl) 2004, 107:83-90.
  • [60]Holmes C, Boche D, Wilkinson D, Yadegarfar G, Hopkins V, Bayer A, Jones RW, Bullock R, Love S, Neal JW, Zotova E, Nicoll JAR: Long term effects of Aβ42 immunization in Alzheimer’s disease: immune response, plaque removal and clinical function. Lancet 2008, 372:216-223.
  • [61]Rinne JO, Brooks DJ, Rossor MN, Fox NC, Bullock R, Klunk WE, Mathis CA, Blennow K, Barakos J, Okello AA, de LIano SRM, Liu E, Koller M, Gregg KM, Schenk D, Black R, Grundman M: (11)C-PiB PET assessment of change in fibrillar amyloid-beta load in patients with Alzheimer’s disease treated with bapineuzumab: a phase 2, double-blind, placebo-controlled, ascending-dose study. Lancet Neurol 2010, 9:363-372.
  • [62]Yoshiyama Y, Lee VM, Trojanowski JQ: Therapeutic strategies for tau mediated neurodegeneration. J Neurol Neurosurg Psychiatry 2013, 84:784-795.
  • [63]Rasool S, Albay R III, Martinez-Coria H, Breydo L, Wu J, Milton S, Misra S, Tran A, Pensalfini A, LaFerla F, Kayed R, Glabe CG: Vaccination with a non-human random sequence amyloid oligomer mimic results in improved cognitive function and reduced plaque deposition and micro hemorrhage in Tg2576 mice. Mol Neurodegener 2012, 7:37. BioMed Central Full Text
  • [64]Rasool S, Martinez-Coria H, Milton S, Glabe CG: Nonhuman amyloid oligomer epitope reduces Alzheimer’s-like neuropathology in 3xTg-AD transgenic mice. Mol Neurobiol 2013, 48:931-940.
  文献评价指标  
  下载次数:0次 浏览次数:20次