期刊论文详细信息
Journal of Biomedical Semantics
The Drosophila phenotype ontology
Georgios V Gkoutos1  Nicholas H Brown4  Kathleen Falls3  Raymund Stefancsik2  Laura Ponting2  Peter A McQuilton2  Gillian H Millburn2  Steven J Marygold2  David Osumi-Sutherland2 
[1] Department of Genetics, University of Cambridge, Downing Street, Cambridge, UK;FlyBase, Department of Genetics, University of Cambridge, Downing Street, Cambridge, UK;The Biological Laboratories, Harvard University, 16 Divinity Avenue, Cambridge, MA, USA;Gurdon Institute & Department of Physiology, Development and Neuroscience, University of Cambridge, Tennis Court Road, Cambridge, UK
关键词: FlyBase;    Gene ontology;    OBO;    OWL;    Ontology;    Phenotype;    Drosophila;   
Others  :  806620
DOI  :  10.1186/2041-1480-4-30
 received in 2013-07-01, accepted in 2013-10-11,  发布年份 2013
PDF
【 摘 要 】

Background

Phenotype ontologies are queryable classifications of phenotypes. They provide a widely-used means for annotating phenotypes in a form that is human-readable, programatically accessible and that can be used to group annotations in biologically meaningful ways. Accurate manual annotation requires clear textual definitions for terms. Accurate grouping and fruitful programatic usage require high-quality formal definitions that can be used to automate classification. The Drosophila phenotype ontology (DPO) has been used to annotate over 159,000 phenotypes in FlyBase to date, but until recently lacked textual or formal definitions.

Results

We have composed textual definitions for all DPO terms and formal definitions for 77% of them. Formal definitions reference terms from a range of widely-used ontologies including the Phenotype and Trait Ontology (PATO), the Gene Ontology (GO) and the Cell Ontology (CL). We also describe a generally applicable system, devised for the DPO, for recording and reasoning about the timing of death in populations. As a result of the new formalisations, 85% of classifications in the DPO are now inferred rather than asserted, with much of this classification leveraging the structure of the GO. This work has significantly improved the accuracy and completeness of classification and made further development of the DPO more sustainable.

Conclusions

The DPO provides a set of well-defined terms for annotating Drosophila phenotypes and for grouping and querying the resulting annotation sets in biologically meaningful ways. Such queries have already resulted in successful function predictions from phenotype annotation. Moreover, such formalisations make extended queries possible, including cross-species queries via the external ontologies used in formal definitions. The DPO is openly available under an open source license in both OBO and OWL formats. There is good potential for it to be used more broadly by the Drosophila community, which may ultimately result in its extension to cover a broader range of phenotypes.

【 授权许可】

   
2013 Osumi-Sutherland et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20140708094810935.pdf 766KB PDF download
Figure 2. 72KB Image download
Figure 1. 58KB Image download
【 图 表 】

Figure 1.

Figure 2.

【 参考文献 】
  • [1]Costa M, Reeve S, Grumbling G, Osumi-Sutherland D: The Drosophila anatomy ontology. J Biomed Sem 2013. in press
  • [2]Sprague J, Bayraktaroglu L, Bradford Y, Conlin T, Dunn N, Fashena D, Frazer K, Haendel M, Howe DG, Knight J, Mani P, Moxon SA, Pich C, Ramachandran S, Schaper K, Segerdell E, Shao X, Singer A, Song P, Sprunger B, Van Slyke CE, Westerfield M: The zebrafish information network: the zebrafish model organism database provides expanded support for genotypes and phenotypes. Nucleic Acids Res 2008, 36(Database issue):D768-D772.
  • [3]Bult CJ, Eppig JT, Blake JA, Kadin JA, Richardson JE, Airey MT, Anagnostopoulos A, Babiuk R, Baldarelli RM, Beal JS, Bello SM, Butler NE, Campbell J, Corbani LE, Dene H, Drabkin HR, Forthofer KL, Giannatto SL, Knowlton M, Lewis JR, McAndrews M, McClatchy S, Miers DS, Ni L, Onda H, Ormsby JE, Recla JM, Reed DJ, Richards-Smith B, Shaw DR, Sitnikov D, Smith CL, Tomczuk M, Washburn LL, Zhu Y: The mouse genome database: genotypes, phenotypes, and models of human disease. Nucleic Acids Res 2013, 41(Database issue):D885-D891.
  • [4]Grumbling G, Strelets V: FlyBase: anatomical data, images and queries. Nucleic Acids Res 2006, 34(Database issue):D484-D488.
  • [5]Engel SR, Balakrishnan R, Binkley G, Christie KR, Costanzo MC, Dwight SS, Fisk DG, Hirschman JE, Hitz BC, Hong EL, Krieger CJ, Livstone MS, Miyasato SR, Nash R, Oughtred R, Park J, Skrzypek MS, Weng S, Wong ED, Dolinski K, Botstein D, Cherry JM: Saccharomyces genome database provides mutant phenotype data. Nucleic Acids Res 2010, 38(Database issue):D433-D436.
  • [6]Mungall C, Ruttenberg R, Horrocks I, Osumi-Sutherland D, Antezana E, Balhoff J, Courtot M, Dietze H, Day-Richter J, Horridge H, Ireland A, Lewis S, Manzoor S, Hamid Tirmizi S: OBO Flat file format 1.4 syntax and semantics. http://oboformat.googlecode.com/svn/trunk/doc/obo-syntax.html webcite
  • [7]Golbreich C, Horrocks I: The OBO to OWL mapping, GO in OWL 1.1! (From Proc. of the third OWL Experiences and directions workshop). CEUR Workshop Proc 2007, 258:1-9.
  • [8]Mungall CJ, Bada M, Berardini TZ, Deegan J, Ireland A, Harris MA, Hill DP, Lomax J: Cross-product extensions of the gene ontology. J Biomed Inform 2011, 44:80-86.
  • [9]Deegan nee Clark JI, Dimmer EC, Mungall CJ: Formalization of taxon-based constraints to detect inconsistencies in annotation and ontology development. BMC Bioinformatics 2010, 11:530.
  • [10]Gkoutos GV, Hoehndorf R: Ontology-based cross-species integration and analysis of Saccharomyces cerevisiae phenotypes. J Biomed Semantics 2012, 3(Suppl 2):S6.
  • [11]Gkoutos GV, Mungall C, Dolken S, Ashburner M, Lewis S, Hancock J, Schofield P, Kohler S, Robinson PN: Entity/quality-based logical definitions for the human skeletal phenome using PATO. Conf Proc IEEE Eng Med Biol Soc 2009, 2009:7069-7072.
  • [12]Gkoutos GV, Green EC, Mallon AM, Blake A, Greenaway S, Hancock JM, Davidson D: Ontologies for the description of mouse phenotypes. Comp Funct Genomics 2004, 5(6-7):545-551.
  • [13]Milyaev N, Osumi-Sutherland D, Reeve S, Burton N, Baldock RA, Armstrong JD: The virtual fly brain browser and query interface. Bioinformatics 2012, 28(3):411-415.
  • [14]Osumi-Sutherland D, Reeve S, Mungall CJ, Neuhaus F, Ruttenberg A, Jefferis GS, Armstrong JD: A strategy for building neuroanatomy ontologies. Bioinformatics 2012, 28(9):1262-1269.
  • [15]Hoehndorf R, Dumontier M, Oellrich A, Rebholz-Schuhmann D, Schofield PN, Gkoutos GV: Interoperability between biomedical ontologies through relation expansion, upper-level ontologies and automatic reasoning. PLoS ONE 2011, 6(7):e22006.
  • [16]Hoehndorf R, Schofield PN, Gkoutos GV: PhenomeNET: a whole-phenome approach to disease gene discovery. Nucleic Acids Res 2011, 39(18):e119.
  • [17]Gkoutos GV, Green EC, Mallon AM, Hancock JM, Davidson D: Using ontologies to describe mouse phenotypes. Genome Biol 2005, 6:R8.
  • [18]Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, Davis AP, Dolinski K, Dwight SS, Eppig JT, Harris MA, Hill DP, Issel-Tarver L, Kasarskis A, Lewis S, Matese JC, Richardson JE, Ringwald M, Rubin GM, Sherlock G: Gene ontology: tool for the unification of biology. The gene ontology consortium. Nat Genet 2000, 25:25-29.
  • [19]Bard J, Rhee SY, Ashburner M: An ontology for cell types. Genome Biol 2005, 6(2):R21.
  • [20]Drysdale: Phenotypic data in FlyBase. Brief Bioinform 2001, 2:68-80.
  • [21]Harris MA, Lock A, Bahler J, Oliver SG, Wood V: FYPO: The fission yeast phenotype ontology. Bioinformatics 2013, 29(13):1671-1678.
  • [22]Rector AL: Modularisation of domain ontologies implemented in description logics and related formalisms including OWL. In Proceedings of the 2nd international conference on Knowledge capture. K-CAP ’03, New York, NY, USA: ACM; 2003:121-128. http://doi.acm.org/10.1145/945645.945664 webcite
  • [23]Levitis D, Lidicker W, Freund G: Behavioural biologists don’t agree on what constitutes behaviour. Anim Behav 2009, 78:103-110.
  • [24]Allen JF: Maintaining knowledge about temporal intervals. Commun ACM 1983, 26(11):832-843. [ISSN 0001-0782]
  • [25]Kohler S, Bauer S, Mungall CJ, Carletti G, Smith CL, Schofield P, Gkoutos GV, Robinson PN: Improving ontologies by automatic reasoning and evaluation of logical definitions. BMC Bioinformatics 2011, 12:418.
  • [26]Robinson PN, Mundlos S: The human phenotype ontology. Clin Genet 2010, 77(6):525-534.
  • [27]Smith CL, Eppig JT: The mammalian phenotype ontology as a unifying standard for experimental and high-throughput phenotyping data. Mamm Genome 2012, 23(9–10):653-668.
  • [28]Schindelman G, Fernandes JS, Bastiani CA, Yook K, Sternberg PW: Worm Phenotype Ontology: integrating phenotype data within and beyond the C. elegans community. BMC Bioinformatics 2011, 12:32.
  • [29]Santana F, Freitas F, Fernandes R, Medeiros Z, Schober D: Towards an ontological representation of morbidity and mortality in description logics. J Biomed Semantics 2012, 3(Suppl 2):S7.
  • [30]OWL 2 EL profile - W3C Recommendation 11 December 2012 http://www.w3.org/TR/owl2-profiles/\#OWL\_2\_EL webcite
  • [31]Kazakov Y, Krötzsch M, Simančík F: ELK reasoner: Architecture and evaluation. (From Proceedings of the 1st International OWL Reasoner Evaluation Workshop). CEUR Workshop Proc 2012, 858:10.
  • [32]Mungall CJ, Emmert DB, The FlyBase Consortium: A Chado case study: an ontology-based modular schema for representing genome-associated biological information. Bioinformatics 2007, 23(13):i337-i346.
  • [33]Hoehndorf R, Hardy NW, Osumi-Sutherland D, Tweedie S, Schofield PN, Gkoutos GV: Systematic analysis of experimental phenotype data reveals gene functions. PLoS ONE 2013, 8(4):e60847.
  • [34]Oellrich A, Hoehndorf R, Gkoutos GV, Rebholz-Schuhmann D: Improving disease gene prioritization by comparing the semantic similarity of phenotypes in mice with those of human diseases. PLoS ONE 2012, 7(6):e38937.
  • [35]Guarino N, Welty C: Evaluating ontological decisions with OntoClean. Commun ACM 2002, 45(2):61-65.
  文献评价指标  
  下载次数:13次 浏览次数:9次