期刊论文详细信息
BMC Veterinary Research
Identification of neglected cestode Taenia multiceps microRNAs by illumina sequencing and bioinformatic analysis
Guangyou Yang1  Xuerong Peng2  Shuxian Wang1  Xiaobin Gu1  Jiahai Wang1  Ning Wang1  Ning Yan1  Huaming Nie1  Wanpeng Zheng1  Runhui Zhang1  Yue Xie1  Deying Yang1  Yan Fu1  Xuhang Wu1 
[1] Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Ya’an 625014, China;Department of Chemistry, College of Life and Basic Science, Sichuan Agricultural University, Ya’an 625014, China
关键词: Candidate novel miRNA;    Illumina sequencing;    Unigene;    Taenia multiceps;    MicroRNA;   
Others  :  1119476
DOI  :  10.1186/1746-6148-9-162
 received in 2013-04-11, accepted in 2013-08-08,  发布年份 2013
PDF
【 摘 要 】

Background

Worldwide, but especially in developing countries, coenurosis of sheep and other livestock is caused by Taenia multiceps larvae, and zoonotic infections occur in humans. Infections frequently lead to host death, resulting in huge socioeconomic losses. MicroRNAs (miRNAs) have important roles in the post-transcriptional regulation of a large number of animal genes by imperfectly binding target mRNAs. To date, there have been no reports of miRNAs in T. multiceps.

Results

In this study, we obtained 12.8 million high quality raw reads from adult T. multiceps small RNA library using Illumina sequencing technology. A total of 796 conserved miRNA families (containing 1,006 miRNAs) from 170,888 unique miRNAs were characterized using miRBase (Release 17.0). Here, we selected three conserved miRNA/miRNA* (antisense strand) duplexes at random and amplified their corresponding precursors using a PCR-based method. Furthermore, 20 candidate novel miRNA precursors were verified by genomic PCR. Among these, six corresponding T. multiceps miRNAs are considered specific for Taeniidae because no homologs were found in other species annotated in miRBase. In addition, 181,077 target sites within T. multiceps transcriptome were predicted for 20 candidate newly miRNAs.

Conclusions

Our large-scale investigation of miRNAs in adult T. multiceps provides a substantial platform for improving our understanding of the molecular regulation of T. multiceps and other cestodes development.

【 授权许可】

   
2013 Wu et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150208071430173.pdf 2583KB PDF download
Figure 6. 124KB Image download
Figure 5. 231KB Image download
Figure 4. 54KB Image download
Figure 3. 125KB Image download
Figure 2. 48KB Image download
Figure 1. 47KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

【 参考文献 】
  • [1]Alvarez-Garcia I, Miska EA: MicroRNA functions in animal development and human disease. Development 2005, 132(21):4653.
  • [2]Kato M, De Lencastre A, Pincus Z, Slack FJ: Dynamic expression of small non-coding RNAs, including novel microRNAs and piRNAs/21U-RNAs, during Caenorhabditis elegans development. Genome Biol 2009, 10(5):R54. BioMed Central Full Text
  • [3]Kloosterman WP, Plasterk RHA: The diverse functions of microRNAs in animal development and disease. Dev Cell 2006, 11(4):441-450.
  • [4]Wei Y, Chen S, Yang P, Ma Z, Kang L: Characterization and comparative profiling of the small RNA transcriptomes in two phases of locust. Genome Biol 2009, 10(1):R6. BioMed Central Full Text
  • [5]Fejes-Toth K, Sotirova V, Sachidanandam R, Assaf G, Hannon GJ, Kapranov P, Foissac S, Willingham AT, Duttagupta R, Dumais E: Post-transcriptional processing generates a diversity of 5’-modified long and short RNAs: Affymetrix/Cold Spring Harbor Laboratory ENCODE Transcriptome Project*. Nature 2009, 457(7232):1028.
  • [6]Ghildiyal M, Zamore PD: Small silencing RNAs: an expanding universe. Nat Rev Genet 2009, 10(2):94-108.
  • [7]Berezikov E, Guryev V, van de Belt J, Wienholds E, Plasterk RH, Cuppen E: Phylogenetic shadowing and computational identification of human microRNA genes. Cell 2005, 120(1):21-24.
  • [8]Filipowicz W, Jaskiewicz L, Kolb FA, Pillai RS: Post-transcriptional gene silencing by siRNAs and miRNAs. Curr Opin Struct Biol 2005, 15(3):331-341.
  • [9]Bartel DP: MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 2004, 116(2):281-297.
  • [10]Lee Y, Jeon K, Lee JT, Kim S, Kim VN: MicroRNA maturation: stepwise processing and subcellular localization. EMBO J 2002, 21(17):4663-4670.
  • [11]Nelson P, Kiriakidou M, Sharma A, Maniataki E, Mourelatos Z: The microRNA world: small is mighty. Trends Biochem Sci 2003, 28(10):534-540.
  • [12]Lee RC, Feinbaum RL, Ambros V: The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 1993, 75(5):843-854.
  • [13]Wightman B, Ha I, Ruvkun G: Posttranscriptional regulation of the heterochronic gene lin-14 by lin-4 mediates temporal pattern formation in C. elegans. Cell 1993, 75(5):855-862.
  • [14]He L, Hannon GJ: MicroRNAs: small RNAs with a big role in gene regulation. Nat Rev Genet 2004, 5(7):522-531.
  • [15]Carmi I: Molecular Biology Select. Cell 2006, 126(2):223-225.
  • [16]Stefani G, Slack FJ: Small non-coding RNAs in animal development. Nat Rev Mol Cell Biol 2008, 9(3):219-230.
  • [17]Edwards G, Herbert I: Observations on the course of Taenia multiceps infections in sheep: clinical signs and post-mortem findings. Br Vet J 1982, 138(6):489.
  • [18]E. B: Precis de parasitologie. 2nd edition. Paris: Masson and Co; 1913:281.
  • [19]Becker B, Jacobson S: Infestation of the human brain with Coenurus cerebralis; a report of three cases. Lancet 1951, 2(6675):198.
  • [20]Benger A, Rennie R, Roberts J, Thornley J, Scholten T: A human coenurus infection in Canada. Am J Trop Med Hyg 1981, 30(3):638.
  • [21]Crusz H: On an English case of an intramedullary spinal Coenurus in Man, with some remarks on the identity of Coenurus spp. infesting Man. J Helminthol 1948, 22(2):73-78.
  • [22]Hermos JA, Healy GR, Schultz MG, Barlow J, Church WG: Fatal human cerebral coenurosis. JAMA 1970, 213(9):1461.
  • [23]Ing MB, Schantz PM, Turner JA: Human coenurosis in North America: case reports and review. Clin Infect Dis 1998, 27(3):519-523.
  • [24]Wainwright J: Coenurus cerebralis and racemose cysts of the brain. J Pathol Bacteriol 1957, 73(2):347-354.
  • [25]Wilson V, Wayte D, Addae R: Human coenurosis-The first reported case from Ghana. Trans R Soc Trop Med Hyg 1972, 66(4):611-623.
  • [26]Gauci C, Vural G, Oncel T, Varcasia A, Damian V, Kyngdon CT, Craig PS, Anderson GA, Lightowlers MW: Vaccination with recombinant oncosphere antigens reduces the susceptibility of sheep to infection with Taenia multiceps. Int J Parasitol 2008, 38(8–9):1041-1050.
  • [27]Sharma D, Chauhan P: Coenurosis status in Afro-Asian region: a review. Small Rumin Res 2006, 64(3):197-202.
  • [28]Huang QX, Cheng XY, Mao ZC, Wang YS, Zhao LL, Yan X, Ferris VR, Xu RM, Xie BY: MicroRNA discovery and analysis of pinewood nematode Bursaphelenchus xylophilus by deep sequencing. PLoS One 2010, 5(10):e13271.
  • [29]Gilad S, Meiri E, Yogev Y, Benjamin S, Lebanony D, Yerushalmi N, Benjamin H, Kushnir M, Cholakh H, Melamed N: Serum microRNAs are promising novel biomarkers. PLoS One 2008, 3(9):e3148.
  • [30]Mitchell PS, Parkin RK, Kroh EM, Fritz BR, Wyman SK, Pogosova-Agadjanyan EL, Peterson A, Noteboom J, O’Briant KC, Allen A: Circulating microRNAs as stable blood-based markers for cancer detection. Proc Nat Sci Acad 2008, 105(30):10513.
  • [31]Xu MJ, Liu Q, Nisbet A, Cai XQ, Yan C, Lin RQ, Yuan ZG, Song HQ, He XH, Zhu XQ: Identification and characterization of microRNAs in Clonorchis sinensis of human health significance. BMC genomics 2010, 11(1):521. BioMed Central Full Text
  • [32]The Sanger Institute FTP site. [http://www.sanger.ac.uk/resources/downloads/helminths/echinococcus-multilocularis.html webcite]
  • [33]Li R, Li Y, Kristiansen K, Wang J: SOAP: short oligonucleotide alignment program. Bioinformatics 2008, 24(5):713-714.
  • [34]Rfam database. [http://www.sanger.ac.uk/software/Rfam webcite]
  • [35]The GenBank noncoding RNA database. [http://www.ncbi.nlm.nih.gov/ webcite]
  • [36]The MIREAP software. [http://sourceforge.net/projects/mireap/ webcite]
  • [37]Zhang B, Pan X, Cox S, Cobb G, Anderson T: Evidence that miRNAs are different from other RNAs. Cell Mol Life Sci 2006, 63(2):246-254.
  • [38]Wang L, Liu H, Li D, Chen H: Identification and characterization of maize microRNAs involved in the very early stage of seed germination. BMC genomics 2011, 12(1):154. BioMed Central Full Text
  • [39]Hofacker IL: Vienna RNA secondary structure server. Nucleic Acids Res 2003, 31(13):3429-3431.
  • [40]Wu X, Fu Y, Yang D, Zhang R, Zheng W, Nie H, Xie Y, Yan N, Hao G, Gu X, Wang S, Peng X, Yang G: Detailed Transcriptome Description of the Neglected Cestode Taenia multiceps. PLoS One 2012, 7(9):e45830.
  • [41]Rehmsmeier M: Prediction of microRNA targets. Methods Mol Biol 2006, 342:87.
  • [42]Rehmsmeier M, Steffen P, Höchsmann M, Giegerich R: Fast and effective prediction of microRNA/target duplexes. RNA 2004, 10(10):1507-1517.
  • [43]The Gene Ontology. http://www.geneontology.org/ webcite
  • [44]The Kyoto encyclopedia of genes and genomes database. http://www.genome.jp/kegg webcite
  • [45]Fu Y, Lan J, Zhang Z, Hou R, Wu X, Yang D, Zhang R, Zheng W, Nie H, Xie Y, Yan N, Yang Z, Wang C, Luo L, Liu L, Gu X, Wang S, Peng X, Yang G: Novel Insights into the Transcriptome of Dirofilaria immitis. PLoS One 2012, 7(7):e41639.
  • [46]GEO of NCBI. [http://www.ncbi.nlm.nih.gov/geo/ webcite]
  • [47]The microRNA database. [http://www.mirbase.org/ webcite]
  • [48]Ambros V: The functions of animal microRNAs. Nature 2004, 431(7006):350-355.
  • [49]Liu Q, Tuo W, Gao H, Zhu XQ: MicroRNAs of parasites: current status and future perspectives. Parasitol Res 2010, 107(3):501-507.
  • [50]De Wit E, Linsen SEV, Cuppen E, Berezikov E: Repertoire and evolution of miRNA genes in four divergent nematode species. Genome Res 2009, 19(11):2064-2074.
  • [51]Ai L, Xu M, Chen M, Zhang Y, Chen S, Guo J, Cai Y, Zhou X, Zhu X, Chen J: Characterization of microRNAs in Taenia saginata of zoonotic significance by Solexa deep sequencing and bioinformatics analysis. Parasitol Res 2011, 110:2373-2378.
  • [52]Lin WC, Huang KY, Chen SC, Huang TY, Chen SJ, Huang PJ, Tang P: Malate dehydrogenase is negatively regulated by miR-1 in Trichomonas vaginalis. Parasitol Res 2009, 105(6):1683-1689.
  • [53]Li G: Biochemistry of parasites: energy metabolism. In Advanced parasitology. Volume 1. 1st edition. Edited by Li G, Xie M. China: High Education Press; 2007:109.
  • [54]Pan Q: Trypanosome: host interactions. In Molecular parasitology. Volume 1. 1st edition. Edited by Pan Q, Tang L. China: Shanghai Science and Technology Press; 2004:353.
  • [55]Cucher M, Prada L, Mourglia-Ettlin G, Dematteis S, Camicia F, Asurmendi S, Rosenzvit M: Identification of Echinococcus granulosus microRNAs and their expression in different life cycle stages and parasite genotypes. Int J Parasitol 2011, 41(3–4):439-448.
  • [56]Stark A, Kheradpour P, Parts L, Brennecke J, Hodges E, Hannon GJ, Kellis M: Systematic discovery and characterization of fly microRNAs using 12 Drosophila genomes. Genome Res 2007, 17(12):1865-1879.
  • [57]Millar AA, Waterhouse PM: Plant and animal microRNAs: similarities and differences. Funct Integr Genomics 2005, 5(3):129-135.
  • [58]Fu Y, Lan J, Wu X, Yang D, Zhang Z, Nie H, Hou R, Zhang R, Zheng W, Xie Y, Yan N, Yang Z, Wang C, Luo L, Liu L, Gu X, Wang S, Peng X, Yang G: Identification of Dirofilaria immitis miRNA using illumina deep sequencing. Veterinary Res 2013, 44:3. BioMed Central Full Text
  • [59]Costa V, Angelini C, De Feis I, Ciccodicola A: Uncovering the complexity of transcriptomes with RNA-Seq. J Biomed Biotechnol 2010, 2010:853916.
  文献评价指标  
  下载次数:65次 浏览次数:9次