期刊论文详细信息
Diagnostic Pathology
Characterization of two new monoclonal antibodies against human papillomavirus type 16 L1 protein
Lanlan Wei1  Hongxi Gu1  Di Li1  Weizhen Xu1  Qinglong Shang1  Yan Wang1 
[1] Pathogenic-Biological Key Laboratory of Heilongjiang Province, Harbin Medical University, Harbin 150081, China
关键词: Variable regions;    Monoclonal antibody;    Human papillomavirus;   
Others  :  1092986
DOI  :  10.1186/1746-1596-9-101
 received in 2014-03-27, accepted in 2014-05-14,  发布年份 2014
PDF
【 摘 要 】

Background

Human papillomavirus type 16 (HPV16) infection is implicated in cervical carcinogenesis. This study aimed to characterize two new monoclonal antibodies (mAbs) against HPV L1 protein.

Methods

The immunocompetence of AE3 and AG7 mAbs for HPV L1 protein was evaluated by Western blot analysis, immunostaining, hemagglutination inhibition assay, and ELISA. The heavy chain variable region (VH) and light chain variable region (VL) of AE3 and AG7 mAbs were sequenced and analyzed.

Results

Both mAbs specifically recognized HPV16 L1 and virus-like particles (VLPs). Both the affinity and the titer of AE3 mAb were higher than that of AG7. There were differences in sequences in the complementary determining regions (CDR) 2 and 3 of VL, as well as in the CDR1 and CDR3 of VH. The two mAbs have distinct predicted three-dimensional structures.

Conclusions

We characterized two mAbs neutralizing antibodies for HPV L1 protein, which would help develop genetic-engineered neutralizing antibodies against HPV16 for diagnostic and therapeutic purposes.

【 授权许可】

   
2014 Wang et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150130155416906.pdf 2310KB PDF download
Figure 4. 103KB Image download
Figure 3. 102KB Image download
Figure 2. 92KB Image download
Figure 1. 66KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

【 参考文献 】
  • [1]De Vuyst H, Clifford G, Li N, Franceschi S: HPV infection in Europe. Eur J Cancer 2009, 45:2632-2639.
  • [2]Franceschi S: The IARC commitment to cancer prevention: the example of papillomavirus and cervical cancer. Recent Results Cancer Res 2005, 166:277-297.
  • [3]Kreimer AR, Clifford GM, Boyle P, Franceschi S: Human papillomavirus types in head and neck squamous cell carcinomas worldwide: a systematic review. Cancer Epidemiol Biomarkers Prev 2005, 14:467-475.
  • [4]García-Espinosa B, Moro-Rodríguez E, Alvarez-Fernández E: Human papillomavirus genotypes in human immunodeficiency virus-positive patients with anal pathology in Madrid. Spain. Diagn Pathol. 2013, 8:204.
  • [5]Frazer IH: Cervical cancer vaccine development. Sex Health 2010, 7:230-234.
  • [6]Luciani S, Jauregui B, Kieny C, Andrus JK: Human papillomavirus vaccines: new tools for accelerating cervical cancer prevention in developing countries. Immunotherapy 2009, 1:795-807.
  • [7]Carestiato FN, Silva KC, Balthazar DS, Silva L, Marinho M, Oliveira LH, Cavalcanti SM: Analysis of molecular biology techniques for the diagnosis of human papillomavirus infection and cervical cancer prevention. Rev Soc Bras Med Trop 2006, 39:428-432.
  • [8]Matsukura T, Sugase M: Pitfalls in the epidemiologic classification of human papillomavirus types associated with cervical cancer using polymerase chain reaction: driver and passenger. Int J Gynecol Cancer 2008, 18:1042-1050.
  • [9]Fraser C, Tomassini JE, Xi L, Golm G, Watson M, Giuliano AR, Barr E, Ault KA: Modeling the long-term antibody response of a human papillomavirus (HPV) virus-like particle (VLP) type 16 prophylactic vaccine. Vaccine 2007, 25:4324-4333.
  • [10]Ohlschläger P, Osen W, Dell K, Faath S, Garcea RL, Jochmus I, Müller M, Pawlita M, Schäfer K, Sehr P, Staib C, Sutter G, Gissmann L: Human papillomavirus type 16 L1 capsomeres induce L1-specific cytotoxic T lymphocytes and tumor regression in C57BL/6 mice. J Virol 2003, 77:4635-4645.
  • [11]Schiller JT, Lowy DR: Papillomavirus-like particle based vaccines: cervical cancer and beyond. Expert Opin Biol Ther 2001, 1:571-581.
  • [12]Chen PP: Structural analyses of human developmentally regulated Vh3 genes. Scand J Immunol 1990, 31:257-267.
  • [13]Wilson N, Simpson R, Cooper-Liddell C: Introductory glycosylation analysis using SDS-PAGE and peptide mass fingerprinting. Methods Mol Biol 2009, 534:205-212.
  • [14]Matoba N, Kajiura H, Cherni I, Doran JD, Bomsel M, Fujiyama K, Mor TS: Biochemical and immunological characterization of the plant-derived candidate human immunodeficiency virus type 1 mucosal vaccine CTB-MPR. Plant Biotechnol J 2009, 7:129-145.
  • [15]Mageed RA, Harmer IJ, Wynn SL, Moyes SP, Maziak BB, Brüggemann M, MacKworth-Young CG: Rearrangement of the human heavy chain variable region gene V3-23 in transgenic mice generates antibodies reactive with a range of antigens on the basis of VHCDR3 and residues intrinsic to the heavy chain variable region. Clin Exp Immunol 2001, 123:1-8.
  文献评价指标  
  下载次数:4次 浏览次数:5次