期刊论文详细信息
Journal of Neuroinflammation
Excitotoxic neuronal cell death during an oligodendrocyte-directed CD8+ T cell attack in the CNS gray matter
Sven G Meuth1  Heinz Wiendl2  Alexander M Herrmann2  Kerstin Göbel2  Nicole Bobak2  Stefan Bittner2  Gordon Hicking2  Nico Melzer2 
[1] Department of Physiology I - Neuropathophysiology, University of Münster, Robert-Koch-Straße 27a, Münster 48149, Germany;Department of Neurology, University of Münster, Albert-Schweitzer-Campus 1, Münster 48149, Germany
关键词: CD8+ T cells;    CNS tissue damage;    Neuronal cell death;    Glutamate excitotoxicity;   
Others  :  1151875
DOI  :  10.1186/1742-2094-10-121
 received in 2013-08-04, accepted in 2013-09-24,  发布年份 2013
PDF
【 摘 要 】

Background

Neural-antigen reactive cytotoxic CD8+ T cells contribute to neuronal dysfunction and degeneration in a variety of inflammatory CNS disorders. Facing excess numbers of target cells, CNS-invading CD8+ T cells cause neuronal cell death either via confined release of cytotoxic effector molecules towards neurons, or via spillover of cytotoxic effector molecules from 'leaky’ immunological synapses and non-confined release by CD8+ T cells themselves during serial and simultaneous killing of oligodendrocytes or astrocytes.

Methods

Wild-type and T cell receptor transgenic CD8+ T cells were stimulated in vitro, their activation status was assessed by flow cytometry, and supernatant glutamate levels were determined using an enzymatic assay. Expression regulation of molecules involved in vesicular glutamate release was examined by quantitative real-time PCR, and mechanisms of non-vesicular glutamate release were studied by pharmacological blocking experiments. The impact of CD8+ T cell-mediated glutamate liberation on neuronal viability was studied in acute brain slice preparations.

Results

Following T cell receptor stimulation, CD8+ T cells acquire the molecular repertoire for vesicular glutamate release: (i) they upregulate expression of glutaminase required to generate glutamate via deamination of glutamine and (ii) they upregulate expression of vesicular proton-ATPase and vesicular glutamate transporters required for filling of vesicles with glutamate. Subsequently, CD8+ T cells release glutamate in a strictly stimulus-dependent manner. Upon repetitive T cell receptor stimulation, CD25high CD8+ T effector cells exhibit higher estimated single cell glutamate release rates than CD25low CD8+ T memory cells. Moreover, glutamate liberation by oligodendrocyte-reactive CD25high CD8+ T effector cells is capable of eliciting collateral excitotoxic cell death of neurons (despite glutamate re-uptake by glia cells and neurons) in intact CNS gray matter.

Conclusion

Glutamate release may represent a crucial effector pathway of neural-antigen reactive CD8+ T cells, contributing to excitotoxicity in CNS inflammation.

【 授权许可】

   
2013 Melzer et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150406112608703.pdf 2668KB PDF download
Figure 6. 142KB Image download
Figure 5. 46KB Image download
Figure 4. 80KB Image download
Figure 3. 84KB Image download
Figure 2. 64KB Image download
Figure 1. 67KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

【 参考文献 】
  • [1]Friese MA, Fugger L: Autoreactive CD8+ T cells in multiple sclerosis: a new target for therapy? Brain 2005, 128:1747-1763.
  • [2]Liblau RS, Wong FS, Mars LT, Santamaria P: Autoreactive CD8 T cells in organ-specific autoimmunity: emerging targets for therapeutic intervention. Immunity 2002, 17:1-6.
  • [3]Neumann H, Medana IM, Bauer J, Lassmann H: Cytotoxic T lymphocytes in autoimmune and degenerative CNS diseases. Trends Neurosci 2002, 25:313-319.
  • [4]Melzer N, Meuth SG, Wiendl H: CD8+ T cells and neuronal damage: direct and collateral mechanisms of cytotoxicity and impaired electrical excitability. Faseb J 2009, 23:3659-3673.
  • [5]Kurts C, Heath WR, Carbone FR, Allison J, Miller JF, Kosaka H: Constitutive class I-restricted exogenous presentation of self antigens in vivo. J Exp Med 1996, 184:923-930.
  • [6]Cao Y, Toben C, Na SY, Stark K, Nitschke L, Peterson A, Gold R, Schimpl A, Hunig T: Induction of experimental autoimmune encephalomyelitis in transgenic mice expressing ovalbumin in oligodendrocytes. Eur J Immunol 2006, 36:207-215.
  • [7]Gobel K, Melzer N, Herrmann AM, Schuhmann MK, Bittner S, Ip CW, Hunig T, Meuth SG, Wiendl H: Collateral neuronal apoptosis in CNS gray matter during an oligodendrocyte-directed CD8(+) T cell attack. Glia 2010, 58:469-480.
  • [8]Saxena A, Bauer J, Scheikl T, Zappulla J, Audebert M, Desbois S, Waisman A, Lassmann H, Liblau RS, Mars LT: Cutting edge: multiple sclerosis-like lesions induced by effector CD8 T cells recognizing a sequestered antigen on oligodendrocytes. J Immunol 2008, 181:1617-1621.
  • [9]Sobottka B, Harrer MD, Ziegler U, Fischer K, Wiendl H, Hunig T, Becher B, Goebels N: Collateral bystander damage by myelin-directed CD8+ T cells causes axonal loss. Am J Pathol 2009, 175:1160-1166.
  • [10]Gobel K, Bittner S, Melzer N, Pankratz S, Dreykluft A, Schuhmann MK, Meuth SG, Wiendl H: CD4(+) CD25(+) FoxP3(+) regulatory T cells suppress cytotoxicity of CD8(+) effector T cells: implications for their capacity to limit inflammatory central nervous system damage at the parenchymal level. J Neuroinflammation 2012, 9:41. BioMed Central Full Text
  • [11]Garg SK, Banerjee R, Kipnis J: Neuroprotective immunity: T cell-derived glutamate endows astrocytes with a neuroprotective phenotype. J Immunol 2008, 180:3866-3873.
  • [12]Meuth SG, Herrmann AM, Simon OJ, Siffrin V, Melzer N, Bittner S, Meuth P, Langer HF, Hallermann S, Boldakowa N, et al.: Cytotoxic CD8+ T cell-neuron interactions: perforin-dependent electrical silencing precedes but is not causally linked to neuronal cell death. J Neurosci 2009, 29:15397-15409.
  • [13]Takeuchi H, Jin S, Wang J, Zhang G, Kawanokuchi J, Kuno R, Sonobe Y, Mizuno T, Suzumura A: Tumor necrosis factor-alpha induces neurotoxicity via glutamate release from hemichannels of activated microglia in an autocrine manner. J Biol Chem 2006, 281:21362-21368.
  • [14]Bevan MJ, Cohn M: Cytotoxic effects of antigen- and mitogen-induced T cells on various targets. J Immunol 1975, 114:559-565.
  • [15]Moore MW, Carbone FR, Bevan MJ: Introduction of soluble protein into the class I pathway of antigen processing and presentation. Cell 1988, 54:777-785.
  • [16]Dixon W, Massey F: Introduction to Statistical Analysis. New York: McGraw-Hill; 1969.
  • [17]Nedergaard M, Takano T, Hansen AJ: Beyond the role of glutamate as a neurotransmitter. Nat Rev Neurosci 2002, 3:748-755.
  • [18]Abdullaev IF, Rudkouskaya A, Schools GP, Kimelberg HK, Mongin AA: Pharmacological comparison of swelling-activated excitatory amino acid release and Cl- currents in cultured rat astrocytes. J Physiol 2006, 572:677-689.
  • [19]Shimamoto K, Lebrun B, Yasuda-Kamatani Y, Sakaitani M, Shigeri Y, Yumoto N, Nakajima T: DL-threo-beta-benzyloxyaspartate, a potent blocker of excitatory amino acid transporters. Mol Pharmacol 1998, 53:195-201.
  • [20]Duan S, Anderson CM, Keung EC, Chen Y, Chen Y, Swanson RA: P2X7 receptor-mediated release of excitatory amino acids from astrocytes. J Neurosci 2003, 23:1320-1328.
  • [21]Shigeri Y, Seal RP, Shimamoto K: Molecular pharmacology of glutamate transporters, EAATs and VGLUTs. Brain Res Brain Res Rev 2004, 45:250-265.
  • [22]Kalia V, Sarkar S, Subramaniam S, Haining WN, Smith KA, Ahmed R: Prolonged interleukin-2Ralpha expression on virus-specific CD8+ T cells favors terminal-effector differentiation in vivo. Immunity 2010, 32:91-103.
  • [23]Lau A, Tymianski M: Glutamate receptors, neurotoxicity and neurodegeneration. Pflugers Arch 2010, 460:525-542.
  • [24]Danbolt NC: Glutamate uptake. Prog Neurobiol 2001, 65:1-105.
  • [25]Xu GY, Liu S, Hughes MG, McAdoo DJ: Glutamate-induced losses of oligodendrocytes and neurons and activation of caspase-3 in the rat spinal cord. Neuroscience 2008, 153:1034-1047.
  • [26]Tenneti L, D’Emilia DM, Troy CM, Lipton SA: Role of caspases in N-methyl-D-aspartate-induced apoptosis in cerebrocortical neurons. J Neurochem 1998, 71:946-959.
  • [27]Du Y, Bales KR, Dodel RC, Hamilton-Byrd E, Horn JW, Czilli DL, Simmons LK, Ni B, Paul SM: Activation of a caspase 3-related cysteine protease is required for glutamate-mediated apoptosis of cultured cerebellar granule neurons. Proc Natl Acad Sci U S A 1997, 94:11657-11662.
  • [28]Ray SK, Karmakar S, Nowak MW, Banik NL: Inhibition of calpain and caspase-3 prevented apoptosis and preserved electrophysiological properties of voltage-gated and ligand-gated ion channels in rat primary cortical neurons exposed to glutamate. Neuroscience 2006, 139:577-595.
  • [29]McCarran WJ, Goldberg MP: White matter axon vulnerability to AMPA/kainate receptor-mediated ischemic injury is developmentally regulated. J Neurosci 2007, 27:4220-4229.
  • [30]Malipiero U, Heuss C, Schlapbach R, Tschopp J, Gerber U, Fontana A: Involvement of the N-methyl-D-aspartate receptor in neuronal cell death induced by cytotoxic T cell-derived secretory granules. Eur J Immunol 1999, 29:3053-3062.
  • [31]Esser MT, Haverstick DM, Fuller CL, Gullo CA, Braciale VL: Ca2+ signaling modulates cytolytic T lymphocyte effector functions. J Exp Med 1998, 187:1057-1067.
  • [32]Kessler B, Hudrisier D, Schroeter M, Tschopp J, Cerottini JC, Luescher IF: Peptide modification or blocking of CD8, resulting in weak TCR signaling, can activate CTL for Fas- but not perforin-dependent cytotoxicity or cytokine production. J Immunol 1998, 161:6939-6946.
  • [33]Purbhoo MA, Irvine DJ, Huppa JB, Davis MM: T cell killing does not require the formation of a stable mature immunological synapse. Nat Immunol 2004, 5:524-530.
  • [34]Russell JH, Ley TJ: Lymphocyte-mediated cytotoxicity. Annu Rev Immunol 2002, 20:323-370.
  • [35]Pitt D, Werner P, Raine CS: Glutamate excitotoxicity in a model of multiple sclerosis. Nat Med 2000, 6:67-70.
  • [36]Smith T, Groom A, Zhu B, Turski L: Autoimmune encephalomyelitis ameliorated by AMPA antagonists. Nat Med 2000, 6:62-66.
  • [37]Melzer N, Meuth SG, Torres-Salazar D, Bittner S, Zozulya AL, Weidenfeller C, Kotsiari A, Stangel M, Fahlke C, Wiendl H: A beta-lactam antibiotic dampens excitotoxic inflammatory CNS damage in a mouse model of multiple sclerosis. PLoS One 2008, 3:e3149.
  • [38]Werner P, Pitt D, Raine CS: Multiple sclerosis: altered glutamate homeostasis in lesions correlates with oligodendrocyte and axonal damage. Ann Neurol 2001, 50:169-180.
  • [39]Pitt D, Nagelmeier IE, Wilson HC, Raine CS: Glutamate uptake by oligodendrocytes: implications for excitotoxicity in multiple sclerosis. Neurology 2003, 61:1113-1120.
  • [40]Mizuno T, Zhang G, Takeuchi H, Kawanokuchi J, Wang J, Sonobe Y, Jin S, Takada N, Komatsu Y, Suzumura A: Interferon-gamma directly induces neurotoxicity through a neuron specific, calcium-permeable complex of IFN-gamma receptor and AMPA GluR1 receptor. Faseb J 2008, 22:1797-1806.
  • [41]Medana I, Martinic MA, Wekerle H, Neumann H: Transection of major histocompatibility complex class I-induced neurites by cytotoxic T lymphocytes. Am J Pathol 2001, 159:809-815.
  文献评价指标  
  下载次数:29次 浏览次数:11次