期刊论文详细信息
Fibrogenesis & Tissue Repair
The extracellular matrix in the kidney: a source of novel non-invasive biomarkers of kidney fibrosis?
Peter Boor1  Morten Asser Karsdal2  Diana Julie Leeming2  Alba A Manresa2  Federica Genovese2 
[1] Institute of Molecular Biomedicine, Comenius University, Bratislava, Slovakia;Nordic Bioscience, 2730 Herlev, Denmark
关键词: Matrix metalloproteinases;    Extracellular matrix;    Biomarkers;    Kidney fibrosis;   
Others  :  802491
DOI  :  10.1186/1755-1536-7-4
 received in 2013-11-21, accepted in 2014-02-27,  发布年份 2014
PDF
【 摘 要 】

Interstitial fibrosis is the common endpoint of end-stage chronic kidney disease (CKD) leading to kidney failure. The clinical course of many renal diseases, and thereby of CKD, is highly variable. One of the major challenges in deciding which treatment approach is best suited for a patient but also in the development of new treatments is the lack of markers able to identify and stratify patients with stable versus progressive disease. At the moment renal biopsy is the only means of diagnosing renal interstitial fibrosis. Novel biomarkers should improve diagnosis of a disease, estimate its prognosis and assess the response to treatment, all in a non-invasive manner. Existing markers of CKD do not fully and specifically address these requirements and in particular do not specifically reflect renal fibrosis. The aim of this review is to give an insight of the involvement of the extracellular matrix (ECM) proteins in kidney diseases and as a source of potential novel biomarkers of renal fibrosis. In particular the use of the protein fingerprint technology, that identifies neo-epitopes of ECM proteins generated by proteolytic cleavage by proteases or other post-translational modifications, might identify such novel biomarkers of renal fibrosis.

【 授权许可】

   
2014 Genovese et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20140708024306568.pdf 1201KB PDF download
Figure 3. 84KB Image download
Figure 2. 54KB Image download
Figure 1. 120KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

【 参考文献 】
  • [1]U.S. Renal Data System, USRDS 2013 Annual Data Report: Atlas of Chronic Kidney Disease and End-Stage Renal Disease in the United States, National Institutes of Health, National Institute of Diabetes and Digestive and Kidney Diseases Bethesda, MD; 2013.
  • [2]Barnes JL, Glass WF: Renal interstitial fibrosis: a critical evaluation of the origin of myofibroblasts. Contrib Nephrol 2011, 169:73-93.
  • [3]Friedman SL, Sheppard D, Duffield JS, Violette S: Therapy for fibrotic diseases: nearing the starting line. Sci Transl Med 2013, 5:167sr1.
  • [4]Boor P, Sebekova K, Ostendorf T, Floege J: Treatment targets in renal fibrosis. Nephrol Dial Transplant 2007, 22:3391-3407.
  • [5]Eddy AA: Molecular basis of renal fibrosis. Pediatr Nephrol 2000, 15:290-301.
  • [6]Boor P, Ostendorf T, Floege J: Renal fibrosis: novel insights into mechanisms and therapeutic targets. Nat Rev Nephrol 2010, 6:643-656.
  • [7]Liu Y: Cellular and molecular mechanisms of renal fibrosis. Nat Rev Nephrol 2011, 7:684-696.
  • [8]Boor P, Konieczny A, Villa L, Kunter U, Van Roeyen CR, LaRochelle WJ, Smithson G, Arrol S, Ostendorf T, Floege J: PDGF-D inhibition by CR002 ameliorates tubulointerstitial fibrosis following experimental glomerulonephritis. Nephrol Dial Transplant 2007, 22:1323-1331.
  • [9]Boor P, Floege J: Chronic kidney disease growth factors in renal fibrosis. Clin Exp Pharmacol Physiol 2011, 38:441-450.
  • [10]Fogo AB: Renal fibrosis: not just PAI-1 in the sky. J Clin Invest 2003, 112:326-328.
  • [11]Malgorzewicz S, Skrzypczak-Jankun E, Jankun J: Plasminogen activator inhibitor-1 in kidney pathology (Review). Int J Mol Med 2013, 31:503-510.
  • [12]Boor P, Floege J: The renal (myo-)fibroblast: a heterogeneous group of cells. Nephrol Dial Transplant 2012, 27:3027-3036.
  • [13]Lebleu VS, Taduri G, O’Connell J, Teng Y, Cooke VG, Woda C, Sugimoto H, Kalluri R: Origin and function of myofibroblasts in kidney fibrosis. Nat Med 2013, 19:1047-1053.
  • [14]Eddy AA: Molecular insights into renal interstitial fibrosis. J Am Soc Nephrol 1996, 7:2495-2508.
  • [15]Farris AB, Colvin RB: Renal interstitial fibrosis: mechanisms and evaluation. Curr Opin Nephrol Hypertens 2012, 21:289-300.
  • [16]Goldsmith D, Jayawardene S, Ackland P: ABC of Kidney Disease. 2nd edition. Chichester: John Wiley & Sons, Ltd; 2013.
  • [17]Kirk GD, Astemborski J, Mehta SH, Spoler C, Fisher C, Allen D, Higgins Y, Moore RD, Afdhal N, Torbenson M, Sulkowski M, Thomas DL: Assessment of liver fibrosis by transient elastography in persons with hepatitis C virus infection or HIV-hepatitis C virus coinfection. Clin Infect Dis 2009, 48:963-972.
  • [18]Korsmo MJ, Ebrahimi B, Eirin A, Woollard JR, Krier JD, Crane JA, Warner L, Glaser K, Grimm R, Ehman RL, Lerman LO: Magnetic resonance elastography noninvasively detects in vivo renal medullary fibrosis secondary to swine renal artery stenosis. Invest Radiol 2013, 48:61-68.
  • [19]Fassett RG, Venuthurupalli SK, Gobe GC, Coombes JS, Cooper MA, Hoy WE: Biomarkers in chronic kidney disease: a review. Kidney Int 2011, 80:806-821.
  • [20]O’Callaghan C: The Renal System at a Glance. 3rd edition. Chichester: John Wiley & Sons, Ltd; 2009.
  • [21]Waikar SS, Bonventre JV: Can we rely on blood urea nitrogen as a biomarker to determine when to initiate dialysis? Clin J Am Soc Nephrol 2006, 1:903-904.
  • [22]D’Amico G, Bazzi C: Pathophysiology of proteinuria. Kidney Int 2003, 63:809-825.
  • [23]Newman DJ, Thakkar H, Edwards RG, Wilkie M, White T, Grubb AO, Price CP: Serum cystatin C measured by automated immunoassay: a more sensitive marker of changes in GFR than serum creatinine. Kidney Int 1995, 47:312-318.
  • [24]Hoffmann A, Nimtz M, Conradt HS: Molecular characterization of beta-trace protein in human serum and urine: a potential diagnostic marker for renal diseases. Glycobiology 1997, 7:499-506.
  • [25]Bonventre JV, Vaidya VS, Schmouder R, Feig P, Dieterle F: Next-generation biomarkers for detecting kidney toxicity. Nat Biotechnol 2010, 28:436-440.
  • [26]Ravani P, Tripepi G, Malberti F, Testa S, Mallamaci F, Zoccali C: Asymmetrical dimethylarginine predicts progression to dialysis and death in patients with chronic kidney disease: a competing risks modeling approach. J Am Soc Nephrol 2005, 16:2449-2455.
  • [27]Chen J, Hamm LL, Kleinpeter MA, Husserl F, Khan IE, Chen CS, Liu Y, Mills KT, He C, Rifai N, Simon EE, He J: Elevated plasma levels of endostatin are associated with chronic kidney disease. Am J Nephrol 2012, 35:335-340.
  • [28]Jonsson KB: The role of fibroblast growth factor 23 in renal disease. Nephrol Dial Transplant 2005, 20:479-482.
  • [29]Gutiérrez OM, Mannstadt M, Isakova T, Rauh-Hain JA, Tamez H, Shah A, Smith K, Lee H, Thadhani R, Jüppner H, Wolf M: Fibroblast growth factor 23 and mortality among patients undergoing hemodialysis. N Engl J Med 2008, 359:584-592.
  • [30]Kendrick J, Cheung AK, Kaufman JS, Greene T, Roberts WL, Smits G, Chonchol M: FGF-23 associates with death, cardiovascular events, and initiation of chronic dialysis. J Am Soc Nephrol 2011, 12:1913-1922.
  • [31]Isakova T, Xie H, Yang W, Xie D, Anderson AH, Scialla J, Wahl P, Gutierrez OM, Steigerwalt S, He J, Schwartz S, Lo J, Ojo A, Sondheimer J, Hsu CY, Lash J, Leonard M, Kusek JW, Feldman HI, Wolf M, Chronic Renal Insufficiency Cohort (CRIC) Study Group: Fibroblast growth factor 23 and risks of mortality and end-stage renal disease in patients with chronic kidney disease. JAMA 2011, 305:2432-2439.
  • [32]Wolf M: Update on fibroblast growth factor 23 in chronic kidney disease. Kidney Int 2012, 82:737-747.
  • [33]Wang G, Lai FM, Lai KB, Chow KM, Li KT, Szeto CC: Messenger RNA expression of podocyte-associated molecules in the urinary sediment of patients with diabetic nephropathy. Nephron Clin Pract 2007, 106:c169-c179.
  • [34]Kanno K, Kawachi H, Uchida Y, Hara M, Shimizu F, Uchiyama M: Urinary sediment podocalyxin in children with glomerular diseases. Nephron Clin Pract 2003, 95:c91-c99.
  • [35]Bolignano D, Lacquaniti A, Coppolino G, Donato V, Campo S, Fazio MR, Nicocia G, Buemi M: Neutrophil gelatinase-associated lipocalin (NGAL) and progression of chronic kidney disease. Clin J Am Soc Nephrol 2009, 4:337-344.
  • [36]Lim AI, Tang SC, Lai KN, Leung JC: Kidney injury molecule-1: more than just an injury marker of tubular epithelial cells? J Cell Physiol 2013, 228:917-924.
  • [37]van Timmeren MM, van den Heuvel MC, Bailly V, Bakker SJ, van Goor H, Stegeman CA: Tubular kidney injury molecule-1 (KIM-1) in human renal disease. J Pathol 2007, 212:209-217.
  • [38]Kern EF, Erhard P, Sun W, Genuth S, Weiss MF: Early urinary markers of diabetic kidney disease: a nested case–control study from the Diabetes Control and Complications Trial (DCCT). Am J Kidney Dis 2010, 55:824-834.
  • [39]Holdt-Lehmann B, Lehmann A, Korten G, Nagel H, Nizze H, Schuff-Werner P: Diagnostic value of urinary alanine aminopeptidase and N-acetyl-beta-D-glucosaminidase in comparison to alpha 1-microglobulin as a marker in evaluating tubular dysfunction in glomerulonephritis patients. Clin Chim Acta 2000, 297:93-102.
  • [40]Kamijo A, Kimura K, Sugaya T, Yamanouchi M, Hikawa A, Hirano N, Hirata Y, Goto A, Omata M: Urinary fatty acid-binding protein as a new clinical marker of the progression of chronic renal disease. J Lab Clin Med 2004, 143:23-30.
  • [41]Nielsen SE, Sugaya T, Hovind P, Baba T, Parving HH, Rossing P: Urinary liver-type fatty acid-binding protein predicts progression to nephropathy in type 1 diabetic patients. Diabetes Care 2010, 33:1320-1324.
  • [42]Malyszko J, Malyszko JS, Bachorzewska-Gajewska H, Poniatowski B, Dobrzycki S, Mysliwiec M: Neutrophil gelatinase-associated lipocalin is a new and sensitive marker of kidney function in chronic kidney disease patients and renal allograft recipients. Transplant Proc 2009, 41:158-161.
  • [43]Shlipak MG, Day EC: Biomarkers for incident CKD: a new framework for interpreting the literature. Nat Rev Nephrol 2013, 9:478-483.
  • [44]Peralta CA, Katz R, Bonventre JV, Sabbisetti V, Siscovick D, Sarnak M, Shlipak MG: Associations of urinary levels of kidney injury molecule 1 (KIM-1) and neutrophil gelatinase-associated lipocalin (NGAL) with kidney function decline in the Multi-Ethnic Study of Atherosclerosis (MESA). Am J Kidney Dis 2012, 60:904-911.
  • [45]Roth GA, Lebherz-Eichinger D, Ankersmit HJ, Hacker S, Hetz H, Vukovich T, Perne A, Reiter T, Farr A, Hörl WH, Haas M, Krenn CG: Increased total cytokeratin-18 serum and urine levels in chronic kidney disease. Clin Chim Acta 2011, 412:713-717.
  • [46]Bosman FT, Stamenkovic I: Functional structure and composition of the extracellular matrix. J Pathol 2003, 200:423-428.
  • [47]Chen YM, Miner JH: Glomerular basement membrane and related glomerular disease. Transl Res 2012, 160:291-297.
  • [48]Shannon MB, Patton BL, Harvey SJ, Miner JH: A hypomorphic mutation in the mouse laminin alpha5 gene causes polycystic kidney disease. J Am Soc Nephrol 2006, 17:1913-1922.
  • [49]Abrass CK, Hansen KM, Patton BL: Laminin alpha4-null mutant mice develop chronic kidney disease with persistent overexpression of platelet-derived growth factor. Am J Pathol 2010, 176:839-849.
  • [50]Fischer E, Mougenot B, Callard P, Ronco P, Rossert J: Abnormal expression of glomerular basement membrane laminins in membranous glomerulonephritis. Nephrol Dial Transplant 2000, 15:1956-1964.
  • [51]Rheault MN, Kren SM, Thielen BK, Mesa HA, Crosson JT, Thomas W, Sado Y, Kashtan CE, Segal Y: Mouse model of X-linked Alport syndrome. J Am Soc Nephrol 2004, 15:1466-1474.
  • [52]Hudson BG, Tryggvason K, Sundaramoorthy M, Neilson EG: Alport’s syndrome, Goodpasture’s syndrome, and type IV collagen. N Engl J Med 2003, 348:2543-2556.
  • [53]Kawase T, Shimizu A, Adachi E, Tojimbara T, Nakajima I, Fuchinoue S, Sawada T: Collagen IV is upregulated in chronic transplant nephropathy. Transplant Proc 2001, 33:1207-1208.
  • [54]Boor P, Celec P, Behuliak M, Grancic P, Kebis A, Kukan M, Pronayova N, Liptaj T, Ostendorf T, Sebekova K: Regular moderate exercise reduces advanced glycation and ameliorates early diabetic nephropathy in obese Zucker rats. Metabolism 2009, 58:1669-1677.
  • [55]Morita M, Uchigata Y, Hanai K, Ogawa Y, Iwamoto Y: Association of urinary type IV collagen with GFR decline in young patients with type 1 diabetes. Am J Kidney Dis 2011, 58:915-920.
  • [56]Okonogi H, Nishimura M, Utsunomiya Y, Hamaguchi K, Tsuchida H, Miura Y, Suzuki S, Kawamura T, Hosoya T, Yamada K: Urinary type IV collagen excretion reflects renal morphological alterations and type IV collagen expression in patients with type 2 diabetes mellitus. Clin Nephrol 2001, 55:357-364.
  • [57]Araki S, Haneda M, Koya D, Isshiki K, Kume S, Sugimoto T, Kawai H, Nishio Y, Kashiwagi A, Uzu T, Maegawa H: Association between urinary type IV collagen level and deterioration of renal function in type 2 diabetic patients without overt proteinuria. Diabetes Care 2010, 33:1805-1810.
  • [58]Furumatsu Y, Nagasawa Y, Shoji T, Yamamoto R, Iio K, Matsui I, Takabatake Y, Kaimori JY, Iwatani H, Kaneko T, Tsubakihara Y, Imai E, Isaka Y, Rakugi H: Urinary type IV collagen in nondiabetic kidney disease. Nephron Clin Pract 2011, 117:c160-c166.
  • [59]Merchant ML, Perkins BA, Boratyn GM, Ficociello LH, Wilkey DW, Barati MT, Bertram CC, Page GP, Rovin BH, Warram JH, Krolewski AS, Klein JB: Urinary peptidome may predict renal function decline in type 1 diabetes and microalbuminuria. J Am Soc Nephrol 2009, 20:2065-2074.
  • [60]Hurskainen T, Moilanen J, Sormunen R, Franzke CW, Soininen R, Loeffek S, Huilaja L, Nuutinen M, Bruckner-Tuderman L, Autio-Harmainen H, Tasanen K: Transmembrane collagen XVII is a novel component of the glomerular filtration barrier. Cell Tissue Res 2012, 348:579-588.
  • [61]Miner JH: The glomerular basement membrane. Exp Cell Res 2012, 318:973-978.
  • [62]Schaefer L, Schaefer RM: Proteoglycans: from structural compounds to signaling molecules. Cell Tissue Res 2010, 339:237-246.
  • [63]Ebefors K, Granqvist A, Ingelsten M, Molne J, Haraldsson B, Nystrom J: Role of glomerular proteoglycans in IgA nephropathy. PLoS One 2011, 6:e18575.
  • [64]Goldberg S, Harvey SJ, Cunningham J, Tryggvason K, Miner JH: Glomerular filtration is normal in the absence of both agrin and perlecan-heparan sulfate from the glomerular basement membrane. Nephrol Dial Transplant 2009, 24:2044-2051.
  • [65]van den Hoven MJ, Wijnhoven TJ, Li JP, Zcharia E, Dijkman HB, Wismans RG, Rops AL, Lensen JF, van den Heuvel LP, van Kuppevelt TH, Vlodavsky I, Berden JH, van der Vlag J: Reduction of anionic sites in the glomerular basement membrane by heparanase does not lead to proteinuria. Kidney Int 2008, 73:278-287.
  • [66]Harvey SJ, Jarad G, Cunningham J, Rops AL, van der Vlag J, Berden JH, Moeller MJ, Holzman LB, Burgess RW, Miner JH: Disruption of glomerular basement membrane charge through podocyte-specific mutation of agrin does not alter glomerular permselectivity. Am J Pathol 2007, 171:139-152.
  • [67]Schlondorff D, Banas B: The mesangial cell revisited: no cell is an island. J Am Soc Nephrol 2009, 20:1179-1187.
  • [68]Barratt J, Smith AC, Molyneux K, Feehally J: Immunopathogenesis of IgAN. Semin Immunopathol 2007, 29:427-443.
  • [69]Mason RM, Wahab NA: Extracellular matrix metabolism in diabetic nephropathy. J Am Soc Nephrol 2003, 14:1358-1373.
  • [70]Schaefer L, Grone HJ, Raslik I, Robenek H, Ugorcakova J, Budny S, Schaefer RM, Kresse H: Small proteoglycans of normal adult human kidney: distinct expression patterns of decorin, biglycan, fibromodulin, and lumican. Kidney Int 2000, 58:1557-1568.
  • [71]Cohen MP, Lautenslager GT, Shearman CW: Increased urinary type IV collagen marks the development of glomerular pathology in diabetic d/db mice. Metabolism 2001, 50:1435-1440.
  • [72]Io H, Hamada C, Fukui M, Horikoshi S, Tomino Y: Relationship between levels of urinary type IV collagen and renal injuries in patients with IgA nephropathy. J Clin Lab Anal 2004, 18:14-18.
  • [73]Johnson TS, Haylor JL, Thomas GL, Fisher M, El Nahas AM: Matrix metalloproteinases and their inhibitions in experimental renal scarring. Exp Nephrol 2002, 10:182-195.
  • [74]Hornigold N, Johnson TS, Huang L, Haylor JL, Griffin M, Mooney A: Inhibition of collagen I accumulation reduces glomerulosclerosis by a Hic-5-dependent mechanism in experimental diabetic nephropathy. Lab Invest 2013, 93:553-565.
  • [75]Keeling J, Herrera GA: Human matrix metalloproteinases: characteristics and pathologic role in altering mesangial homeostasis. Microsc Res Tech 2008, 71:371-379.
  • [76]Rozario T, DeSimone DW: The extracellular matrix in development and morphogenesis: a dynamic view. Dev Biol 2010, 341:126-140.
  • [77]Sharma AK, Mauer SM, Kim Y, Michael AF: Interstitial fibrosis in obstructive nephropathy. Kidney Int 1993, 44:774-788.
  • [78]Bakun M, Niemczyk M, Domanski D, Jazwiec R, Perzanowska A, Niemczyk S, Kistowski M, Fabijanska A, Borowiec A, Paczek L, Dadlez M: Urine proteome of autosomal dominant polycystic kidney disease patients. Clin Proteomics 2012, 9:13. BioMed Central Full Text
  • [79]Stokes MB, Holler S, Cui Y, Hudkins KL, Eitner F, Fogo A, Alpers CE: Expression of decorin, biglycan, and collagen type I in human renal fibrosing disease. Kidney Int 2000, 57:487-498.
  • [80]Rossing K, Mischak H, Dakna M, Zurbig P, Novak J, Julian BA, Good DM, Coon JJ, Tarnow L, Rossing P: Urinary proteomics in diabetes and CKD. J Am Soc Nephrol 2008, 19:1283-1290.
  • [81]Soylemezoglu O, Wild G, Dalley AJ, MacNeil S, Milford-Ward A, Brown CB, el Nahas AM: Urinary and serum type III collagen: markers of renal fibrosis. Nephrol Dial Transplant 1997, 12:1883-1889.
  • [82]Teppo AM, Tornroth T, Honkanen E, Gronhagen-Riska C: Urinary amino-terminal propeptide of type III procollagen (PIIINP) as a marker of interstitial fibrosis in renal transplant recipients. Transplantation 2003, 75:2113-2119.
  • [83]Ghoul BE, Squalli T, Servais A, Elie C, Meas-Yedid V, Trivint C, Vanmassenhove J, Grunfeld JP, Olivo-Marin JC, Thervet E, Noël LH, Prié D, Fakhouri F: Urinary procollagen III aminoterminal propeptide (PIIINP): a fibrotest for the nephrologist. Clin J Am Soc Nephrol 2010, 5:205-210.
  • [84]Vleming LJ, Baelde JJ, Westendorp RG, Daha MR, van Es LA, Bruijn JA: Progression of chronic renal disease in humans is associated with the deposition of basement membrane components and decorin in the interstitial extracellular matrix. Clin Nephrol 1995, 44:211-219.
  • [85]Okuda S, Languino LR, Ruoslahti E, Border WA: Elevated expression of transforming growth factor-beta and proteoglycan production in experimental glomerulonephritis. Possible role in expansion of the mesangial extracellular matrix. J Clin Invest 1990, 86:453-462.
  • [86]Hugo C, Shankland SJ, Pichler RH, Couser WG, Johnson RJ: Thrombospondin 1 precedes and predicts the development of tubulointerstitial fibrosis in glomerular disease in the rat. Kidney Int 1998, 53:302-311.
  • [87]Frantz C, Stewart KM, Weaver VM: The extracellular matrix at a glance. J Cell Sci 2010, 123:4195-4200.
  • [88]Border WA, Noble NA, Yamamoto T, Harper JR, Yamaguchi Y, Pierschbacher MD, Ruoslahti E: Natural inhibitor of transforming growth factor-beta protects against scarring in experimental kidney disease. Nature 1992, 360:361-364.
  • [89]Schaefer L: Extracellular matrix molecules: endogenous danger signals as new drug targets in kidney diseases. Curr Opin Pharmacol 2010, 10:185-190.
  • [90]Diamond JR, Levinson M, Kreisberg R, Ricardo SD: Increased expression of decorin in experimental hydronephrosis. Kidney Int 1997, 51:1133-1139.
  • [91]Lebleu VS, Teng Y, O’Connell JT, Charytan D, Muller GA, Muller CA, Sugimoto H, Kalluri R: Identification of human epididymis protein-4 as a fibroblast-derived mediator of fibrosis. Nat Med 2013, 19:227-231.
  • [92]Schaefer L: Small leucine-rich proteoglycans in kidney disease. J Am Soc Nephrol 2011, 22:1200-1207.
  • [93]Isaka Y, Brees DK, Ikegaya K, Kaneda Y, Imai E, Noble NA, Border WA: Gene therapy by skeletal muscle expression of decorin prevents fibrotic disease in rat kidney. Nat Med 1996, 2:418-423.
  • [94]Stridh S, Palm F, Hansell P: Renal interstitial hyaluronan: functional aspects during normal and pathological conditions. Am J Physiol Regul Integr Comp Physiol 2012, 302:R1235-R1249.
  • [95]Wight TN: Versican: a versatile extracellular matrix proteoglycan in cell biology. Curr Opin Cell Biol 2002, 14:617-623.
  • [96]Bode-Lesniewska B, Dours-Zimmermann MT, Odermatt BF, Briner J, Heitz PU, Zimmermann DR: Distribution of the large aggregating proteoglycan versican in adult human tissues. J Histochem Cytochem 1996, 44:303-312.
  • [97]Rudnicki M, Perco P, Neuwirt H, Noppert SJ, Leierer J, Sunzenauer J, Eder S, Zoja C, Eller K, Rosenkranz AR, Müller GA, Mayer B, Mayer G: Increased renal versican expression is associated with progression of chronic kidney disease. PLoS One 2012, 7:e44891.
  • [98]Shiomi T, Lemaitre V, D’Armiento J, Okada Y: Matrix metalloproteinases, a disintegrin and metalloproteinases, and a disintegrin and metalloproteinases with thrombospondin motifs in non-neoplastic diseases. Pathol Int 2010, 60:477-496.
  • [99]Mulder GM, Melenhorst WB, Celie JW, Kloosterhuis NJ, Hillebrands JL, Ploeg RJ, Seelen MA, Visser L, van Dijk MC, van Goor H: ADAM17 up-regulation in renal transplant dysfunction and non-transplant-related renal fibrosis. Nephrol Dial Transplant 2012, 27:2114-2122.
  • [100]Melenhorst WB, van den Heuvel MC, Timmer A, Huitema S, Bulthuis M, Timens W, van Goor H: ADAM19 expression in human nephrogenesis and renal disease: associations with clinical and structural deterioration. Kidney Int 2006, 70:1269-1278.
  • [101]Melenhorst WB, van den Heuvel MC, Stegeman CA, van der LJ, Huitema S, van den BA, van Goor H: Upregulation of ADAM19 in chronic allograft nephropathy. Am J Transplant 2006, 6:1673-1681.
  • [102]Nakamura A, Sakai Y, Ohata C, Komurasaki T: Expression and significance of a disintegrin and metalloproteinase with thrombospondin motifs (ADAMTS)-1 in an animal model of renal interstitial fibrosis induced by unilateral ureteral obstruction. Exp Toxicol Pathol 2007, 59:1-7.
  • [103]Jamale TE, Hase NK, Kulkarni M, Iqbal AM, Rurali E, Kulkarni MG, Shetty P, Pradeep KJ: Hereditary ADAMTS 13 deficiency presenting as recurrent acute kidney injury. Indian J Nephrol 2012, 22:298-300.
  • [104]Lu P, Takai K, Weaver VM, Werb Z: Extracellular matrix degradation and remodeling in development and disease. Cold Spring Harb Perspect Biol 2011, 3:pii:a005058.
  • [105]Nagase H, Visse R, Murphy G: Structure and function of matrix metalloproteinases and TIMPs. Cardiovasc Res 2006, 69:562-573.
  • [106]Altemtam N, Nahas ME, Johnson T: Urinary matrix metalloproteinase activity in diabetic kidney disease: a potential marker of disease progression. Nephron Extra 2012, 2:219-232.
  • [107]Rao VH, Meehan DT, Delimont D, Nakajima M, Wada T, Gratton MA, Cosgrove D: Role for macrophage metalloelastase in glomerular basement membrane damage associated with alport syndrome. Am J Pathol 2006, 169:32-46.
  • [108]Tan RJ, Liu Y: Matrix metalloproteinases in kidney homeostasis and diseases. Am J Physiol Renal Physiol 2012, 302:F1351-F1361.
  • [109]Catania JM, Chen G, Parrish AR: Role of matrix metalloproteinases in renal pathophysiologies. Am J Physiol Renal Physiol 2007, 292:F905-F911.
  • [110]Pardo A, Selman M: Matrix metalloproteases in aberrant fibrotic tissue remodeling. Proc Am Thorac Soc 2006, 3:383-388.
  • [111]Turck J, Pollock AS, Lee LK, Marti HP, Lovett DH: Matrix metalloproteinase 2 (gelatinase A) regulates glomerular mesangial cell proliferation and differentiation. J Biol Chem 1996, 271:15074-15083.
  • [112]Gonzalez-Avila G, Iturria C, Vadillo-Ortega F, Ovalle C, Montano M: Changes in matrix metalloproteinases during the evolution of interstitial renal fibrosis in a rat experimental model. Pathobiology 1998, 66:196-204.
  • [113]Schaefer L, Han X, Gretz N, Hafner C, Meier K, Matzkies F, Schaefer RM: Tubular gelatinase A (MMP-2) and its tissue inhibitors in polycystic kidney disease in the Han:SPRD rat. Kidney Int 1996, 49:75-81.
  • [114]Tashiro K, Koyanagi I, Ohara I, Ito T, Saitoh A, Horikoshi S, Tomino Y: Levels of urinary matrix metalloproteinase-9 (MMP-9) and renal injuries in patients with type 2 diabetic nephropathy. J Clin Lab Anal 2004, 18:206-210.
  • [115]Surendran K, Simon TC, Liapis H, McGuire JK: Matrilysin (MMP-7) expression in renal tubular damage: association with Wnt4. Kidney Int 2004, 65:2212-2222.
  • [116]Karsdal MA, Bay-Jensen AC, Leeming DJ, Henriksen K, Christiansen C: Quantification of “end products” of tissue destruction in inflammation may reflect convergence of cytokine and signaling pathways - implications for modern clinical chemistry. Biomarkers 2013, 18:375-378.
  • [117]Karsdal MA, Delvin E, Christiansen C: Protein fingerprints - relying on and understanding the information of serological protein measurements. Clin Biochem 2011, 44:1278-1279.
  • [118]Karsdal MA, Nielsen MJ, Sand JM, Henriksen K, Genovese F, Bay-Jensen AC, Smith V, Adamkewicz JI, Christiansen C, Leeming DJ: Extracellular matrix remodeling: the common denominator in connective tissue diseases. Possibilities for evaluation and current understanding of the matrix as more than a passive architecture, but a key player in tissue failure. Assay Drug Dev Technol 2013, 11:70-92.
  • [119]Bay-Jensen AC, Liu Q, Byrjalsen I, Li Y, Wang J, Pedersen C, Leeming DJ, Dam EB, Zheng Q, Qvist P, Karsdal MA: Enzyme-linked immunosorbent assay (ELISAs) for metalloproteinase derived type II collagen neoepitope, CIIM–increased serum CIIM in subjects with severe radiographic osteoarthritis. Clin Biochem 2011, 44:423-429.
  • [120]Leeming DJ, Byrjalsen I, Jimenez W, Christiansen C, Karsdal MA: Protein fingerprinting of the extracellular matrix remodelling in a rat model of liver fibrosis–a serological evaluation. Liver Int 2013, 33:439-447.
  • [121]Leeming DJ, Sand JM, Nielsen MJ, Genovese F, Martinez FJ, Hogaboam CM, Han MK, Klickstein LB, Karsdal MA: Serological investigation of the collagen degradation profile of patients with chronic obstructive pulmonary disease or idiopathic pulmonary fibrosis. Biomark Insights 2012, 7:119-126.
  • [122]Leeming DJ, Karsdal MA, Rasmussen LM, Scholze A, Tepel M: Association of systemic collagen type IV formation with survival among patients undergoing hemodialysis. PLoS One 2013, 8:e71050.
  • [123]Leeming DJ, Karsdal MA, Byrjalsen I, Trebicka J, Nielsen MJ, Christiansen C, Møller S, Krag A: Novel serological neo-epitope markers of extracellular matrix proteins for the detection of portal hypertension. Aliment Pharmacol Ther 2013, 38:1086-1096.
  • [124]Skjøt-Arkil H, Clausen RE, Nguyen QH, Wang Y, Zheng Q, Martinez FJ, Hogaboam CM, Han M, Klickstein LB, Larsen MR, Nawrocki A, Leeming DJ, Karsdal MA: Measurement of MMP-9 and -12 degraded elastin (ELM) provides unique information on lung tissue degradation. BMC Pulm Med 2012, 12:34. BioMed Central Full Text
  • [125]Vassiliadis E, Veidal SS, Barascuk N, Mullick JB, Clausen RE, Larsen L, Simonsen H, Larsen DV, Bay-Jensen AC, Segovia-Silvestre T, Leeming DJ, Karsdal MA: Measurement of matrix metalloproteinase 9-mediated collagen type III degradation fragment as a marker of skin fibrosis. BMC Dermatol 2011, 11:6. BioMed Central Full Text
  • [126]Vassiliadis E, Larsen DV, Clausen RE, Veidal SS, Barascuk N, Larsen L, Simonsen H, Silvestre TS, Hansen C, Overgaard T, Leeming DJ, Karsdal MA: Measurement of CO3-610, a potential liver biomarker derived from matrix metalloproteinase-9 degradation of collagen type iii, in a rat model of reversible carbon-tetrachloride-induced fibrosis. Biomark Insights 2011, 6:49-58.
  • [127]Veidal SS, Karsdal MA, Vassiliadis E, Nawrocki A, Larsen MR, Nguyen QH, Hagglund P, Luo Y, Zheng Q, Vainer B, Leeming DJ: MMP mediated degradation of type VI collagen is highly associated with liver fibrosis–identification and validation of a novel biochemical marker assay. PLoS One 2011, 6:e24753.
  • [128]Veidal SS, Karsdal MA, Nawrocki A, Larsen MR, Dai Y, Zheng Q, Hagglund P, Vainer B, Skjot-Arkil H, Leeming DJ: Assessment of proteolytic degradation of the basement membrane: a fragment of type IV collagen as a biochemical marker for liver fibrosis. Fibrogenesis Tissue Repair 2011, 4:22. BioMed Central Full Text
  • [129]Genovese F, Barascuk N, Larsen L, Larsen MR, Nawrocki A, Li Y, Zheng Q, Wang J, Veidal SS, Leeming DJ, Karsdal MA: Biglycan fragmentation in pathologies associated with extracellular matrix remodeling by matrix metalloproteinases. Fibrogenesis Tissue Repair 2013, 6:9. BioMed Central Full Text
  • [130]Barascuk N, Genovese F, Larsen L, Byrjalsen I, Zheng Q, Sun S, Hosbond S, Poulsen TS, Diederichsen A, Jensen JM, Mickley H, Register TC, Rasmussen LM, Leeming DJ, Christiansen C, Karsdal MA: A MMP derived versican neo-epitope is elevated in plasma from patients with atherosclerotic heart disease. Int J Clin Exp Med 2013, 6:174-184.
  • [131]Veidal SS, Vassiliadis E, Barascuk N, Zhang C, Segovia-Silvestre T, Klickstein L, Larsen MR, Qvist P, Christiansen C, Vainer B, Karsdal MA: Matrix metalloproteinase-9-mediated type III collagen degradation as a novel serological biochemical marker for liver fibrogenesis. Liver Int 2010, 30:1293-1304.
  • [132]Schierwagen R, Leeming DJ, Klein S, Granzow M, Nielsen MJ, Sauerbruch T, Krag A, Karsdal MA, Trebicka J: Serum markers of the extracellular matrix remodeling reflect antifibrotic therapy in bile-duct ligated rats. Front Physiol 2013, 4:195.
  • [133]Leeming DJ, Nielsen MJ, Dai Y, Veidal SS, Vassiliadis E, Zhang C, He Y, Vainer B, Zheng Q, Karsdal MA: Enzyme-linked immunosorbent serum assay specific for the 7S domain of Collagen Type IV (P4NP 7S): A marker related to the extracellular matrix remodeling during liver fibrogenesis. Hepatol Res 2012, 42:482-493.
  • [134]Iimura O, Takahashi H, Yashiro T, Madoiwa S, Sakata Y, Asano Y, Kusano E: Effect of ureteral obstruction on matrix metalloproteinase-2 in rat renal cortex. Clin Exp Nephrol 2004, 8:223-229.
  • [135]Sharma AK, Mauer SM, Kim Y, Michael AF: Altered expression of matrix metalloproteinase-2, TIMP, and TIMP-2 in obstructive nephropathy. J Lab Clin Med 1995, 125:754-761.
  • [136]Jain S, Bicknell GR, Nicholson ML: Molecular changes in extracellular matrix turnover after renal ischaemia-reperfusion injury. Br J Surg 2000, 87:1188-1192.
  • [137]Camp TM, Smiley LM, Hayden MR, Tyagi SC: Mechanism of matrix accumulation and glomerulosclerosis in spontaneously hypertensive rats. J Hypertens 2003, 21:1719-1727.
  • [138]Cheng S, Pollock AS, Mahimkar R, Olson JL, Lovett DH: Matrix metalloproteinase 2 and basement membrane integrity: a unifying mechanism for progressive renal injury. FASEB J 2006, 20:1898-1900.
  • [139]Inkinen KA, Soots AP, Krogerus LA, Lautenschlager IT, Ahonen JP: Fibrosis and matrix metalloproteinases in rat renal allografts. Transpl Int 2005, 18:506-512.
  • [140]Wu K, Setty S, Mauer SM, Killen P, Nagase H, Michael AF, Tsilibary EC: Altered kidney matrix gene expression in early stages of experimental diabetes. Acta Anat (Basel) 1997, 158:155-165.
  • [141]Portik-Dobos V, Harris AK, Song W, Hutchinson J, Johnson MH, Imig JD, Pollock DM, Ergul A: Endothelin antagonism prevents early EGFR transactivation but not increased matrix metalloproteinase activity in diabetes. Am J Physiol Regul Integr Comp Physiol 2006, 290:R435-R441.
  • [142]Basile DP, Martin DR, Hammerman MR: Extracellular matrix-related genes in kidney after ischemic injury: potential role for TGF-beta in repair. Am J Physiol 1998, 275:F894-F903.
  • [143]Eddy AA: Expression of genes that promote renal interstitial fibrosis in rats with proteinuria. Kidney Int Suppl 1996, 54:S49-S54.
  • [144]Eddy AA: Interstitial inflammation and fibrosis in rats with diet-induced hypercholesterolemia. Kidney Int 1996, 50:1139-1149.
  • [145]Engelmyer E, van GH, Edwards DR, Diamond JR: Differential mRNA expression of renal cortical tissue inhibitor of metalloproteinase-1, -2, and -3 in experimental hydronephrosis. J Am Soc Nephrol 1995, 5:1675-1683.
  • [146]Boor P, Celec P, Martin IV, Villa L, Hodosy J, Klenovicsová K, Esposito C, Schäfer S, Albrecht-Küpper B, Ostendorf T, Heidland A, Šebeková K: The peroxisome proliferator-activated receptor-alpha agonist, BAY PP1, attenuates renal fibrosis in rats. Kidney Int 2011, 80:1182-1197.
  • [147]Boor P, Konieczny A, Villa L, Schult AL, Bucher E, Rong S, Kunter U, van Roeyen CR, Polakowski T, Hawlisch H, Hillebrandt S, Lammert F, Eitner F, Floege J, Ostendorf T: Complement C5 mediates experimental tubulointerstitial fibrosis. J Am Soc Nephrol 2007, 18:1508-1515.
  • [148]Glick AD, Jacobson HR, Haralson MA: Mesangial deposition of type I collagen in human glomerulosclerosis. Hum Pathol 1992, 23:1373-1379.
  • [149]Sampson NS, Ryan ST, Enke DA, Cosgrove D, Koteliansky V, Gotwals P: Global gene expression analysis reveals a role for the alpha 1 integrin in renal pathogenesis. J Biol Chem 2001, 276:34182-34188.
  • [150]Zeisberg M, Ericksen MB, Hamano Y, Neilson EG, Ziyadeh F, Kalluri R: Differential expression of type IV collagen isoforms in rat glomerular endothelial and mesangial cells. Biochem Biophys Res Commun 2002, 295:401-407.
  • [151]Schaefer L, Macakova K, Raslik I, Micegova M, Gröne HJ, Schönherr E, Robenek H, Echtermeyer FG, Grässel S, Bruckner P, Schaefer RM, Iozzo RV, Kresse H: Absence of decorin adversely influences tubulointerstitial fibrosis of the obstructed kidney by enhanced apoptosis and increased inflammatory reaction. Am J Pathol 2002, 160:1181-1191.
  • [152]Schmid H, Boucherot A, Yasuda Y, Henger A, Brunner B, Eichinger F, Nitsche A, Kiss E, Bleich M, Gröne HJ, Nelson PJ, Schlöndorff D, Cohen CD, Kretzler M, European Renal cDNA Bank (ERCB) Consortium: Modular activation of nuclear factor-kappaB transcriptional programs in human diabetic nephropathy. Diabetes 2006, 55:2993-3003.
  • [153]Rugheimer L, Carlsson C, Johnsson C, Hansell P: Renal hyaluronan content during experimental uncontrolled diabetes in rats. J Physiol Pharmacol 2008, 59:115-128.
  • [154]Wells AF, Larsson E, Tengblad A, Fellstrom B, Tufveson G, Klareskog L, Laurent TC: The localization of hyaluronan in normal and rejected human kidneys. Transplantation 1990, 50:240-243.
  文献评价指标  
  下载次数:19次 浏览次数:2次