期刊论文详细信息
Journal of Biomedical Science
Active RHOA favors retention of human hematopoietic stem/progenitor cells in their niche
Dominique Bonnet2  Atul Kumar1  Fernando Anjos-Afonso2  Bithiah Grace Jaganathan1 
[1] Department of Biotechnology, Indian Institute of Technology Guwahati, Guwahati, Assam, India;Haematopoietic Stem Cell Laboratory, Cancer Research UK, London Research Institute, 44 Lincoln’s Inn Fields, London WC2A 3PX, UK
关键词: BM niche;    Stem cell migration;    Hematopoietic stem cells;    RHOA;   
Others  :  823308
DOI  :  10.1186/1423-0127-20-66
 received in 2013-08-17, accepted in 2013-09-10,  发布年份 2013
PDF
【 摘 要 】

Background

Hematopoietic stem/progenitor cells (HSPCs) maintain the hematopoietic system by balancing their self-renewal and differentiation events. Hematopoietic stem cells also migrate to various sites and interact with their specific microenvironment to maintain the integrity of the system. Rho GTPases have been found to control the migration of hematopoietic cells and other cell types. Although the role of RAC1, RAC2 and CDC42 has been studied, the role of RHOA in human hematopoietic stem cells is unclear.

Results

By utilizing constitutively active and dominant negative RHOA, we show that RHOA negatively regulates both in vitro and in vivo migration and dominant negative RHOA significantly increased the migration potential of human HSC/HPCs. Active RHOA expression favors the retention of hematopoietic stem/progenitor cells in the niche rather than migration and was found to lock the cells in the G0 cell cycle phase thereby affecting their long-term self-renewal potential.

Conclusion

The current study demonstrates that down-regulation of RHOA might be used to facilitate the migration and homing of hematopoietic stem cells without affecting their long-term repopulating ability. This might be of interest especially for increasing the homing of ex vivo expanded HSPC.

【 授权许可】

   
2013 Jaganathan et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20140713002119368.pdf 713KB PDF download
Figure 5. 40KB Image download
Figure 4. 42KB Image download
Figure 3. 68KB Image download
Figure 2. 62KB Image download
Figure 1. 41KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

【 参考文献 】
  • [1]Banyard J, Anand-Apte B, Zetter BR SM: Motility and invasion are differentially modulated by Rho family GTPases. Oncogene 2000, 19(4):580-591.
  • [2]Bug G, Rossmanith T, Henschler R, Kunz-Schughart LA, Schroder B, Kampfmann M, Kreutz M, Hoelzer D, Ottmann OG: Rho family small GTPases control migration of hematopoietic progenitor cells into multicellular spheroids of bone marrow stroma cells. J Leukoc Biol 2002, 72(4):837-845.
  • [3]Jaganathan BG, Ruester B, Dressel L, Stein S, Grez M, Seifried E, Henschler R: Rho inhibition induces migration of mesenchymal stromal cells. Stem Cells 2007, 25(8):1966-1974.
  • [4]Millan J, Williams L, Ridley AJ: An in vitro model to study the role of endothelial rho GTPases during leukocyte transendothelial migration. Methods Enzymol 2006, 406:643-655.
  • [5]Parri M, Chiarugi P: Rac and Rho GTPases in cancer cell motility control. Cell Commun Signal 2010, 8:23. BioMed Central Full Text
  • [6]Sordella R, Jiang W, Chen GC, Curto M, Settleman J: Modulation of Rho GTPase signaling regulates a switch between adipogenesis and myogenesis. Cell 2003, 113(2):147-158.
  • [7]Xu Y, Wagner DR, Bekerman E, Chiou M, James AW, Carter D, Longaker MT: Connective tissue growth factor in regulation of RhoA mediated cytoskeletal tension associated osteogenesis of mouse adipose-derived stromal cells. PLoS One 2010, 5(6):e11279.
  • [8]Bishop AL, Hall A: Rho GTPases and their effector proteins. Biochem J 2000, 348(Pt 2):241-255.
  • [9]Hall A, Nobes CD: Rho GTPases: molecular switches that control the organization and dynamics of the actin cytoskeleton. Philos Trans R Soc Lond B Biol Sci 2000, 355(1399):965-970.
  • [10]Barabe F, Kennedy JA, Hope KJ, Dick JE: Modeling the initiation and progression of human acute leukemia in mice. Science 2007, 316(5824):600-604.
  • [11]Kasper B, Tidow N, Grothues D, Welte K: Differential expression and regulation of GTPases (RhoA and Rac2) and GDIs (LyGDI and RhoGDI) in neutrophils from patients with severe congenital neutropenia. Blood 2000, 95(9):2947-2953.
  • [12]Mulloy JC, Cancelas JA, Filippi MD, Kalfa TA, Guo F, Zheng Y: Rho GTPases in hematopoiesis and hemopathies. Blood 2009, 115(5):936-947.
  • [13]Gu Y, Jia B, Yang FC, D’Souza M, Harris CE, Derrow CW, Zheng Y, Williams DA: Biochemical and biological characterization of a human Rac2 GTPase mutant associated with phagocytic immunodeficiency. J Biol Chem 2001, 276(19):15929-15938.
  • [14]Pasqualucci L, Neumeister P, Goossens T, Nanjangud G, Chaganti RS, Kuppers R, Dalla-Favera R: Hypermutation of multiple proto-oncogenes in B-cell diffuse large-cell lymphomas. Nature 2001, 412(6844):341-346.
  • [15]Reuther GW, Lambert QT, Booden MA, Wennerberg K, Becknell B, Marcucci G, Sondek J, Caligiuri MA, Der CJ: Leukemia-associated Rho guanine nucleotide exchange factor, a Dbl family protein found mutated in leukemia, causes transformation by activation of RhoA. J Biol Chem 2001, 276(29):27145-27151.
  • [16]Sanchez-Aguilera A, Rattmann I, Drew DZ, Muller LU, Summey V, Lucas DM, Byrd JC, Croce CM, Gu Y, Cancelas JA, Johnston P, Moritz T, Williams DA: Involvement of RhoH GTPase in the development of B-cell chronic lymphocytic leukemia. Leukemia 2009, 24(1):97-104.
  • [17]Bojesen SE, Ammerpohl O, Weinhausl A, Haas OA, Mettal H, Bohle RM, Borkhardt A, Fuchs U: Characterisation of the GRAF gene promoter and its methylation in patients with acute myeloid leukaemia and myelodysplastic syndrome. Br J Cancer 2006, 94(2):323-332.
  • [18]Somervaille TC, Cleary ML: Identification and characterization of leukemia stem cells in murine MLL-AF9 acute myeloid leukemia. Cancer Cell 2006, 10(4):257-268.
  • [19]Gu Y, Filippi MD, Cancelas JA, Siefring JE, Williams EP, Jasti AC, Harris CE, Lee AW, Prabhakar R, Atkinson SJ, Kwiatkowski DJ, Williams DA: Hematopoietic cell regulation by Rac1 and Rac2 guanosine triphosphatases. Science 2003, 302(5644):445-449.
  • [20]Ghiaur G, Ferkowicz MJ, Milsom MD, Bailey J, Witte D, Cancelas JA, Yoder MC, Williams DA: Rac1 is essential for intraembryonic hematopoiesis and for the initial seeding of fetal liver with definitive hematopoietic progenitor cells. Blood 2008, 111(7):3313-3321.
  • [21]Yang FC, Atkinson SJ, Gu Y, Borneo JB, Roberts AW, Zheng Y, Pennington J, Williams DA: Rac and Cdc42 GTPases control hematopoietic stem cell shape, adhesion, migration, and mobilization. Proc Natl Acad Sci USA 2001, 98(10):5614-5618.
  • [22]Jansen M, Yang FC, Cancelas JA, Bailey JR, Williams DA: Rac2-deficient hematopoietic stem cells show defective interaction with the hematopoietic microenvironment and long-term engraftment failure. Stem Cells 2005, 23(3):335-346.
  • [23]Ambruso DR, Knall C, Abell AN, Panepinto J, Kurkchubasche A, Thurman G, Gonzalez-Aller C, Hiester A, deBoer M, Harbeck RJ, Oyer R, Johnson GL Roos D: Human neutrophil immunodeficiency syndrome is associated with an inhibitory Rac2 mutation. Proc Natl Acad Sci USA 2000, 97(9):4654-4659.
  • [24]Kurkchubasche AG, Panepinto JA, Tracy TF Jr, Thurman GW, Ambruso DR: Clinical features of a human Rac2 mutation: a complex neutrophil dysfunction disease. J Pediatr 2001, 139(1):141-147.
  • [25]Zhang X, Shang X, Guo F, Murphy K, Kirby M, Kelly P, Reeves L, Smith FO, Williams DA, Zheng Y, Pang Q: Defective homing is associated with altered Cdc42 activity in cells from patients with Fanconi anemia group A. Blood 2008, 112(5):1683-1686.
  • [26]Yang L, Wang L, Geiger H, Cancelas JA, Mo J, Zheng Y: Rho GTPase Cdc42 coordinates hematopoietic stem cell quiescence and niche interaction in the bone marrow. Proc Natl Acad Sci USA 2007, 104(12):5091-5096.
  • [27]Ghiaur G, Lee A, Bailey J, Cancelas JA, Zheng Y, Williams DA: Inhibition of RhoA GTPase activity enhances hematopoietic stem and progenitor cell proliferation and engraftment. Blood 2006, 108(6):2087-2094.
  • [28]Suwa H, Ohshio G, Imamura T, Watanabe G, Arii S, Imamura M, Narumiya S, Hiai H, Fukumoto M: Overexpression of the rhoC gene correlates with progression of ductal adenocarcinoma of the pancreas. Br J Cancer 1998, 77(1):147-152.
  • [29]Cancelas JA, Lee AW, Prabhakar R, Stringer KF, Zheng Y, Williams DA: Rac GTPases differentially integrate signals regulating hematopoietic stem cell localization. Nat Med 2005, 11(8):886-891.
  • [30]Gazitt Y: Homing and mobilization of hematopoietic stem cells and hematopoietic cancer cells are mirror image processes, utilizing similar signaling pathways and occurring concurrently: circulating cancer cells constitute an ideal target for concurrent treatment with chemotherapy and antilineage-specific antibodies. Leukemia 2004, 18(1):1-10.
  • [31]Gottig S, Mobest D, Ruster B, Grace B, Winter S, Seifried E, Gille J, Wieland T, Henschler R: Role of the monomeric GTPase Rho in hematopoietic progenitor cell migration and transplantation. Eur J Immunol 2006, 36(1):180-189.
  • [32]Olson MF, Paterson HF, Marshall CJ: Signals from Ras and Rho GTPases interact to regulate expression of p21Waf1/Cip1. Nature 1998, 394(6690):295-299.
  • [33]Roovers K, Klein EA, Castagnino P, Assoian RK: Nuclear translocation of LIM kinase mediates Rho-Rho kinase regulation of cyclin D1 expression. Dev Cell 2003, 5(2):273-284.
  • [34]Welsh CF, Roovers K, Villanueva J, Liu Y, Schwartz MA, Assoian RK: Timing of cyclin D1 expression within G1 phase is controlled by Rho. Nat Cell Biol 2001, 3(11):950-957.
  文献评价指标  
  下载次数:46次 浏览次数:10次