期刊论文详细信息
Journal of Molecular Signaling
Multiple biomarker tissue arrays: A computational approach to identifying protein-protein interactions in the EGFR/ERK signalling pathway
L Miguel Antón Aparicio1  I Santamarina Caínzos2  M Valladares-Ayerbes3  G Aparicio Gallego2  V Medina Villaamil2 
[1] UDC Medical Department, A Coruña, Coruña, Spain;INIBIC, Oncology Group, CHU A Coruña, A Coruña, Coruña, Spain;Medical Oncology Service, CHU A Coruña, A Coruña, Coruña, Spain
关键词: Tissue array;    Renal cell carcinoma;    Interacting proteins;    EGFR;   
Others  :  802831
DOI  :  10.1186/1750-2187-7-14
 received in 2012-04-18, accepted in 2012-08-15,  发布年份 2012
PDF
【 摘 要 】

Background

Many studies have demonstrated genetic and environmental factors that lead to renal cell carcinoma (RCC) and that occur during a protracted period of tumourigenesis. It appears suitable to identify and characterise potential molecular markers that appear during tumourigenesis and that might provide rapid and effective possibilities for the early detection of RCC. EGFR activation induces cell cycle progression, inhibition of apoptosis and angiogenesis, promotion of invasion/metastasis, and other tumour promoting activities. Over-expression of EGFR is thought to play an important role in tumour initiation and progression of RCC because up-regulation of EGFR has been associated with high grade cancers and a worse prognosis.

Methods

Characterisation of the protein profile interacting with EGFR was performed using the following: an immunohistochemical (IHC) study of EGFR, a comprehensive computational study of EGFR protein-protein interactions, an analysis correlating the expression levels of EGFR with other significant markers in the tumourigenicity of RCC, and finally, an analysis of the utility of EGFR for prognosis in a cohort of patients with renal cell carcinoma.

Results

The cases that showed a higher level of this protein fell within the clear cell histological subtype (p = 0.001). The EGFR significance statistic was found with respect to a worse prognosis. In vivo significant correlations were found with PDGFR-β, Flk-1, Hif1-α, proteins related to differentiation (such as DLL3 and DLL4 ligands), and certain metabolic proteins such as Glut5. In silico significant associations gave us a panel of 32 EGFR-interacting proteins (EIP) using the APID and STRING databases.

Conclusions

This work summarises the multifaceted role of EGFR in the pathology of RCC, and it identifies EIPs that could help to provide mechanistic explanations for the different behaviours observed in tumours.

【 授权许可】

   
2012 Medina Villaamil et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20140708031533502.pdf 3984KB PDF download
Figure 4. 74KB Image download
Figure 3. 116KB Image download
Figure 2. 77KB Image download
Figure 1. 66KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

【 参考文献 】
  • [1]Kanehisa M, Goto S, Furumichi M, Tanabe M, Hirakawa M: KEGG for representation and analysis of molecular networks involving diseases and drugs. Nucleic Acids Res 2010, 38:D355-D360.
  • [2]Melenhorst WBWH, Mulder GM, Xi Q, Hoenderop JGJ, Kimura K, Eguchi S, Van Goor H: Epidermal growth factor signaling in the kidney: key roles in physiology and disease. Hypertension 2008, 52:987-993.
  • [3]Pu YS, Huang CY, Kuo YZ, Kang WY, Liu GY, Huang AM, Yu HJ, Lai MK, Huang SP, Wu WJ, Chiou SJ, Hour TC: Characterization of membranous and cytoplasmic EGFR expression in human normal cortex and renal cell carcinoma. J Biomed Sci 2009, 16:82. BioMed Central Full Text
  • [4]Merseburger AS, Hennenlotter J, Simon P, Kruck S, Koch E, Hortsmann M, Kuehs U, Kufer R, Stenzl A, Kuczyk MA: Membranous expression and prognostic implications of epidermal growth factor receptor protein in human renal cell cancer. Anticancer Res 2005, 25:1901-1907.
  • [5]Lee SJ, Lattouf JB, Xanthopoulos J, Linehan WM, Bottaro DP, Vasselli JR: Von Hippel-Lindau tumor suppressor gene loss in renal cell carcinoma promotes oncogenic epidermal growth factor receptor signaling via Akt-1 and MEK-1. Eur Urol 2008, 54(4):845-853.
  • [6]Hirschhorn JN, Daly MJ: Genome-wide association studies for common diseases and complex traits. Nat Rev Genet 2005, 6:95-108.
  • [7]Chowdhury SA, Nibbe RK, Chance MR, Koyutürk M: Subnetwork state functions define dysregulated subnetworks in cancer. J Comput Biol 2011, 18(3):263-281.
  • [8]Li G, Xiao Z, Liu J, Li C, Li F, Chen Z: Cancer: a proteomic disease. Sci China Life Sci 2011, 54(5):403-408.
  • [9]Legrain P, Wojcik J, Gauthier JM: Protein-protein interaction maps: a lead towards cellular functions. Trends Genet 2001, 17:346-352.
  • [10]Medina V, Alvarez A, Aparicio G, Díaz S, Rivas LA, Santamarina I, Valladares M, Aparicio LM: Tissue array analysis for the differentiation of gliosis from gliomas. Mol Med Rep 2011, 4:451-457.
  • [11]Xenarios I, Eisenberg D: Protein interaction databases. Curr Opin Biotechnol 2001, 12:334-339.
  • [12]Prieto C, De Las Rivas J: APID: Agile Protein Interaction DataAnalyzer. Nucleic Acids Res 2006, 34:W298-W302.
  • [13]Alfarano C, Andrade CE, Anthony K, Bahroos N, Bajec M, Bantoft K, Betel D, Bobechko B, Boutilier K, Burguess E, et al.: The Biomolecular Interaction Network Database and related tools 2005 update. Nucleic Acids Res 2005, 33:D418-D424.
  • [14]Salwinski L, Miller CS, Smith AJ, Pettit FK, Bowie JU, Eisenberg D: The Database of Interacting Proteins: 2004 update. Nucleic Acids Res 2004, 32:D449-D451.
  • [15]Peri S, Navarro JD, Amanchy R, Kristiansen TZ, Jonnalagadda CK, Surendranath V, Niranjan V, Muthusamy B, Gandhi TK, Gronborg M, et al.: Development of human protein reference database as an initial platform for approaching systems biology in humans. Genome Res 2003, 13:2363-2371.
  • [16]Hermjakob H, Montecchi-Palazzi L, Lewington C, Mudali S, Kerrien S, Orchard S, Vingron M, Roechert B, Roepstorff P, Valencia A, et al.: IntAct: an open source molecular interaction database. Nucleic Acid Res 2004, 32:D452-D455.
  • [17]Zanzoni A, Montecchi-Palazzi L, Quondam M, Ausiello G, Helmer-Citterich M, Cesareni G: MINT: a Molecular INTeraction database. FEBS Lett 2002, 513:135-140.
  • [18]von Mering C, Huynen M, Jaeggi D, Schmidt S, Bork P, Snel B: STRING: a database of predicted functional associations between proteins. Nucleic Acids Res 2003, 31(1):258-261.
  • [19]Kanehisa M, Goto S, Furumichi M, Tanabe M, Hirakawa M: KEGG for representation and analysis of molecular networks involving diseases and drugs. Nucleic Acids Res 2010, 38:D355-D360.
  • [20]Daeui P, Hyoung J, Byoung-Chul K, Young H, Hae C: Computational approach to identify enzymes that are potential therapeutic candidates for psoriasis. Enzyme Res 2011, 2011:826784.
  • [21]Dandekar T, Snel B, Huynen M, Bork P: Conservation of gene order: a fingerprint of proteins that physically interact. Trends Biochem Sci 1998, 23(9):324-328.
  • [22]Enright A, Illopoulos I, Kyrpides N, Ouzounis C: Protein interaction maps for complete genomes based on gene fusion events. Nature 1999, 402(6757):86-90.
  • [23]Pellegrini M, Marcotte E, Thompson M, Eisenberg D, Yeates T: Assigning protein functions by comparative genome analysis: protein phylogenetic profiles. Proc Natl Acad Sci USA 1999, 96(8):4285-4288.
  • [24]Matthews L, Vaglio P, Reboul J, Ge H, Davis BP, Garrels J, Vincent S, Vidal M: Identification of potential interaction networks using sequence-based searchesfor conserved protein-protein interactions or “interologs”. Genome Res 2001, 11(12):2120-2126.
  • [25]Gullick WJ: Prevalence of aberrant expression of the epidermal growth factor receptor in human cancers. Br Med Bull 1991, 47:87-98.
  • [26]Watanabe S, Lazar E, Sporn MB: Transformation of normal rat kidney (NRK) cells by an infectious retrovirus carrying a synthetic rat type alpha transforming growth factor gene. Proc Natl Acad Sci USA 1987, 84:1258-1262.
  • [27]Pu YS, Huang CY, Kuo YZ, Kang WY, Liu GY, Huang AM, Yu HJ, Lai MK, Huang SP, Wu WJ, Chiou SJ, Hour TC: Characterization of membranous and cytoplasmic EGFR expression in human normal renal cortex and renal cell carcinoma. J Biomed Sci 2009, 12(16):82.
  • [28]Normanno N, Bianco C, De Luca A, Salomon DS: The role of EGF-related peptides in tumor growth. Front Biosci 2001, 6:D685-D707.
  • [29]Normanno N, Bianco C, De Luca A, Maiello MR, Salomon DS: Target-based agents against ErbB receptors and their ligands: A novel approach to cancer treatment. Endocr Relat Canc 2003, 10:1-21.
  • [30]Langner C, Ratschek M, Rehak P, Schips L, Zigeuner R: Are heterogenous results of EGFR immunoreactivity in renal cell carcinoma related to non-standardised criteria for staining evaluation? J Clin Pathol 2004, 57:773-775.
  • [31]Merseburger AS, Hennenlotter J, Simon P, Kruck S, Koch E, Horstmann M, Kuehs U, Kufer R, Stenzl A, Kuczyk MA: Membranous expression and prognostic implications of epidermal growth factor receptor protein in human renal cell cancer. Anticancer Res 2005, 25:1901-1907.
  • [32]Hofmockel G, Riess S, Bassukas ID, Dammrich J: Epidermal growth factor family and renal cell carcinoma: expression and prognostic impact. Eur Urol 1997, 31:478-484.
  • [33]Kallio JP, Hirvikoski P, Helin H, Kellokumpu-Lehtinen P, Luukkaala T, Tammela TL, Martikainen PM: Membranous location of EGFR immunostaining is associated with good prognosis in renal cell carcinoma. Br J Cancer 2003, 89:1266-1269.
  • [34]Uhlman DL, Nguyen P, Manivel JC, Zhang G, Hagen K, Fraley E, Aeppli D, Niehans GA: Epidermal growth factor receptor and transforming growth factor alpha expression in papillary and nonpapillary renal cell carcinoma: correlation with metastatic behavior and prognosis. Clin Cancer Res 1995, 1:913-920.
  • [35]Moch H, Sauter G, Gasser TC, Bubendorf L, Richter J, Presti JC Jr, Waldman FM, Mihatsch MJ: EGF-r gene copy number changes in renal cell carcinoma detected by fluorescence in situ hybridization. J Pathol 1998, 184:424-429.
  • [36]Gunaratnam L, Morley M, Franovic A, de Paulsen N, Mekhail K, Parolin DA, Nakamura E, Lorimer IA, Lee S: Hypoxia Inducible Factor Activates the Transforming Growth Factor-α/Epidermal Growth Factor Receptor Growth Stimulatory Pathway in VHL−/− Renal Cell. J Biol Chem 2003, 278(45):44966-44974.
  • [37]Aparicio LM, Villaamil VM, Gallego GA, Caínzos IS, Campelo RG, Rubira LV, Estévez SV, Mateos LL, Perez JL, Vázquez MR, Calvo OF, Bolós MV: Expression of Notch1 to −4 and their ligands in renal cell carcinoma: a tissue microarray study. Cancer Genomics Proteomics 2011, 8(2):93-101.
  • [38]Cheng P, Nefedova Y, Corzo CA, Gabrilovich DI: Regulation of dendritic cell differentiation by bone marrow stroma via different Notch ligands. Blood 2007, 109:507-515.
  • [39]Purow BW, Sundaresan TK, Burdick MJ, Kefas BA, Comeau LD, Hawkinson MP, Su Q, Kotliarov Y, Lee J, Zhang W, Fine HA: Notch-1 regulates transcription of the epidermal growth factor receptor through p53. Carcinogenesis 2008, 29(5):918-925.
  • [40]Medina Villaamil V, Aparicio Gallego G, Valbuena Rubira L, García Campelo R, Valladares-Ayerbes M, Grande Pulido E, Victoria Bolós M, Santamarina Caínzos I, Antón Aparicio LM: Fructose transporter GLUT5 expression in clear renal cell carcinoma. Oncol Rep 2011, 25(2):315-323.
  • [41]Tallquist M, Kazlauskas A: PDGF signaling in cells and mice. Cytokine Growth Factor Rev 2004, 15(4):205-213.
  • [42]Lee CT, Genega EM, Hutchinson B, Fearn PA, Kattan MW, Russo P, Reuter VE: Conventional (clear cell) renal carcinoma metastases have greater bcl-2 expression than high-risk primary tumors. Urol Oncol 2003, 21(3):179-184.
  • [43]Szklarczyk D, Franceschini A, Kuhn M, Simonovic M, Roth A, Minguez P, Doerks T, Stark M, Muller J, Bork P, Jensen LJ, von Mering C: The STRING database in 2011: functional interaction networks of proteins, globally integrated and scored. Nucleic Acids Res 2011, 39:D561-D568.
  文献评价指标  
  下载次数:20次 浏览次数:8次