期刊论文详细信息
Epigenetics & Chromatin
Murine esBAF chromatin remodeling complex subunits BAF250a and Brg1 are necessary to maintain and reprogram pluripotency-specific replication timing of select replication domains
David M Gilbert3  Zhong Wang4  Gerald R Crabtree5  Jiong Tang5  Miguel A Esteban1  Yong Fan2  Peng Fang2  Xiaolin Gao2  Dana Battaglia3  Vishnu Dileep3  Takayo Sasaki3  Tyrone Ryba3  Ienglam Lei4  Shin-ichiro Takebayashi3 
[1] Stem Cell and Cancer Biology Group, Key Laboratory of Regenerative Biology, South China Institute for Stem Cell Biology and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China;Harvard Stem Cell Institute, 1350 Massachusetts Avenue, Cambridge, MA, 02138, USA;Department of Biological Science, Florida State University, 319 Stadium Drive, Tallahassee, FL, 32306, USA;Department of Cardiac Surgery, Cardiovascular Research Center, University of Michigan Medical School, North Campus Research Complex, Ann Arbor, MI, 48109, USA;Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA, 94305, USA
关键词: Developmental regulation;    Chromosome;    esBAF complex;    Replication timing;    Replication domains;   
Others  :  804947
DOI  :  10.1186/1756-8935-6-42
 received in 2013-09-09, accepted in 2013-12-02,  发布年份 2013
PDF
【 摘 要 】

Background

Cellular differentiation and reprogramming are accompanied by changes in replication timing and 3D organization of large-scale (400 to 800 Kb) chromosomal domains (‘replication domains’), but few gene products have been identified whose disruption affects these properties.

Results

Here we show that deletion of esBAF chromatin-remodeling complex components BAF250a and Brg1, but not BAF53a, disrupts replication timing at specific replication domains. Also, BAF250a-deficient fibroblasts reprogrammed to a pluripotency-like state failed to reprogram replication timing in many of these same domains. About half of the replication domains affected by Brg1 loss were also affected by BAF250a loss, but a much larger set of domains was affected by BAF250a loss. esBAF binding in the affected replication domains was dependent upon BAF250a but, most affected domains did not contain genes whose transcription was affected by loss of esBAF.

Conclusions

Loss of specific esBAF complex subunits alters replication timing of select replication domains in pluripotent cells.

【 授权许可】

   
2013 Takebayashi et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20140708071037621.pdf 2283KB PDF download
Figure 5. 38KB Image download
Figure 4. 106KB Image download
Figure 3. 111KB Image download
Figure 2. 101KB Image download
Figure 1. 98KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

【 参考文献 】
  • [1]Bantignies F, Roure V, Comet I, Leblanc B, Schuettengruber B, Bonnet J, Tixier V, Mas A, Cavalli G: Polycomb-dependent regulatory contacts between distant Hox loci in Drosophila. Cell 2011, 144:214-226.
  • [2]Hakim O, Sung MH, Voss TC, Splinter E, John S, Sabo PJ, Thurman RE, Stamatoyannopoulos JA, de Laat W, Hager GL: Diverse gene reprogramming events occur in the same spatial clusters of distal regulatory elements. Genome Res 2011, 21:697-706.
  • [3]Montavon T, Soshnikova N, Mascrez B, Joye E, Thevenet L, Splinter E, de Laat W, Spitz F, Duboule D: A regulatory archipelago controls Hox genes transcription in digits. Cell 2011, 147:1132-1145.
  • [4]Sexton T, Yaffe E, Kenigsberg E, Bantignies F, Leblanc B, Hoichman M, Parrinello H, Tanay A, Cavalli G: Three-dimensional folding and functional organization principles of the Drosophila genome. Cell 2012, 148:458-472.
  • [5]Takebayashi S, Dileep V, Ryba T, Dennis JH, Gilbert DM: Chromatin-interaction compartment switch at developmentally regulated chromosomal domains reveals an unusual principle of chromatin folding. Proc Natl Acad Sci USA 2012, 109:12574-12579.
  • [6]Hiratani I, Ryba T, Itoh M, Yokochi T, Schwaiger M, Chang CW, Lyou Y, Townes TM, Schubeler D, Gilbert DM: Global reorganization of replication domains during embryonic stem cell differentiation. PLoS Biol 2008, 6:e245.
  • [7]Ryba T, Battaglia D, Pope BD, Hiratani I, Gilbert DM: Genome-scale analysis of replication timing: from bench to bioinformatics. Nat Protoc 2011, 6:870-895.
  • [8]Hiratani I, Ryba T, Itoh M, Rathjen J, Kulik M, Papp B, Fussner E, Bazett-Jones DP, Plath K, Dalton S, Rathjen PD, Gilbert DM: Genome-wide dynamics of replication timing revealed by in vitro models of mouse embryogenesis. Genome Res 2010, 20:155-169.
  • [9]Ryba T, Battaglia D, Chang BH, Shirley JW, Buckley Q, Pope BD, Devidas M, Druker BJ, Gilbert DM: Abnormal developmental control of replication timing domains in pediatric acute lymphoblastic leukemia. Genome Res 2012, 22:1833-1844.
  • [10]Ryba T, Hiratani I, Lu J, Itoh M, Kulik M, Zhang J, Schulz TC, Robins AJ, Dalton S, Gilbert DM: Evolutionarily conserved replication timing profiles predict long-range chromatin interactions and distinguish closely related cell types. Genome Res 2010, 20:761-770.
  • [11]Yaffe E, Farkash-Amar S, Polten A, Yakhini Z, Tanay A, Simon I: Comparative analysis of DNA replication timing reveals conserved large-scale chromosomal architecture. PLoS Genet 2010, 6:e1001011.
  • [12]Pope BD, Chandra T, Buckley Q, Hoare M, Ryba T, Wiseman FK, Kuta A, Wilson MD, Odom DT, Gilbert DM: Replication-timing boundaries facilitate cell-type and species-specific regulation of a rearranged human chromosome in mouse. Hum Mol Genet 2012, 21:4162-4170.
  • [13]Wu R, Singh PB, Gilbert DM: Uncoupling global and fine-tuning replication timing determinants for mouse pericentric heterochromatin. J Cell Biol 2006, 174:185-194.
  • [14]Jorgensen HF, Azuara V, Amoils S, Spivakov M, Terry A, Nesterova T, Cobb BS, Ramsahoye B, Merkenschlager M, Fisher AG: The impact of chromatin modifiers on the timing of locus replication in mouse embryonic stem cells. Genome Biol 2007, 8:R169. BioMed Central Full Text
  • [15]Yokochi T, Poduch K, Ryba T, Lu J, Hiratani I, Tachibana M, Shinkai Y, Gilbert DM: G9a selectively represses a class of late-replicating genes at the nuclear periphery. Proc Natl Acad Sci USA 2009, 106:19363-19368.
  • [16]Knott SR, Peace JM, Ostrow AZ, Gan Y, Rex AE, Viggiani CJ, Tavare S, Aparicio OM: Forkhead transcription factors establish origin timing and long-range clustering in S. cerevisiae. Cell 2012, 148:99-111.
  • [17]Hayano M, Kanoh Y, Matsumoto S, Renard-Guillet C, Shirahige K, Masai H: Rif1 is a global regulator of timing of replication origin firing in fission yeast. Genes Dev 2012, 26:137-150.
  • [18]Cornacchia D, Dileep V, Quivy JP, Foti R, Tili F, Santarella-Mellwig R, Antony C, Almouzni G, Gilbert DM, Buonomo SB: Mouse Rif1 is a key regulator of the replication-timing programme in mammalian cells. EMBO J 2012, 31:3678-3690.
  • [19]Yamazaki S, Ishii A, Kanoh Y, Oda M, Nishito Y, Masai H: Rif1 regulates the replication timing domains on the human genome. EMBO J 2012, 31:3667-3677.
  • [20]Li J, Santoro R, Koberna K, Grummt I: The chromatin remodeling complex NoRC controls replication timing of rRNA genes. EMBO J 2005, 24:120-127.
  • [21]Yan Z, Wang Z, Sharova L, Sharov AA, Ling C, Piao Y, Aiba K, Matoba R, Wang W, Ko MS: BAF250B-associated SWI/SNF chromatin-remodeling complex is required to maintain undifferentiated mouse embryonic stem cells. Stem Cells 2008, 26:1155-1165.
  • [22]Wu JI, Lessard J, Crabtree GR: Understanding the words of chromatin regulation. Cell 2009, 136:200-206.
  • [23]Yoo AS, Staahl BT, Chen L, Crabtree GR: MicroRNA-mediated switching of chromatin-remodelling complexes in neural development. Nature 2009, 460:642-646.
  • [24]Ho L, Crabtree GR: Chromatin remodelling during development. Nature 2010, 463:474-484.
  • [25]Ying QL, Wray J, Nichols J, Batlle-Morera L, Doble B, Woodgett J, Cohen P, Smith A: The ground state of embryonic stem cell self-renewal. Nature 2008, 453:519-523.
  • [26]Singhal N, Graumann J, Wu G, Arauzo-Bravo MJ, Han DW, Greber B, Gentile L, Mann M, Scholer HR: Chromatin-Remodeling Components of the BAF Complex Facilitate Reprogramming. Cell 2010, 141:943-955.
  • [27]Lessard J, Wu JI, Ranish JA, Wan M, Winslow MM, Staahl BT, Wu H, Aebersold R, Graef IA, Crabtree GR: An essential switch in subunit composition of a chromatin remodeling complex during neural development. Neuron 2007, 55:201-215.
  • [28]Yoo AS, Sun AX, Li L, Shcheglovitov A, Portmann T, Li Y, Lee-Messer C, Dolmetsch RE, Tsien RW, Crabtree GR: MicroRNA-mediated conversion of human fibroblasts to neurons. Nature 2011, 476:228-231.
  • [29]Takeuchi JK, Bruneau BG: Directed transdifferentiation of mouse mesoderm to heart tissue by defined factors. Nature 2009, 459:708-711.
  • [30]Gao X, Tate P, Hu P, Tjian R, Skarnes WC, Wang Z: ES cell pluripotency and germ-layer formation require the SWI/SNF chromatin remodeling component BAF250a. Proc Natl Acad Sci USA 2008, 105:6656-6661.
  • [31]Chandler RL, Brennan J, Schisler JC, Serber D, Patterson C, Magnuson T: ARID1a-DNA interactions are required for promoter occupancy by SWI/SNF. Mol Cell Biol 2013, 33:265-280.
  • [32]Ho L, Ronan JL, Wu J, Staahl BT, Chen L, Kuo A, Lessard J, Nesvizhskii AI, Ranish J, Crabtree GR: An embryonic stem cell chromatin remodeling complex, esBAF, is essential for embryonic stem cell self-renewal and pluripotency. Proc Natl Acad Sci USA 2009, 106:5181-5186.
  • [33]Ho L, Miller EL, Ronan JL, Ho WQ, Jothi R, Crabtree GR: esBAF facilitates pluripotency by conditioning the genome for LIF/STAT3 signalling and by regulating polycomb function. Nat Cell Biol 2011, 13:903-913.
  • [34]Krasteva V, Buscarlet M, Diaz-Tellez A, Bernard MA, Crabtree GR, Lessard JA: The BAF53a subunit of SWI/SNF-like BAF complexes is essential for hemopoietic stem cell function. Blood 2012, 120:4720-4732.
  • [35]Ho L, Jothi R, Ronan JL, Cui K, Zhao K, Crabtree GR: An embryonic stem cell chromatin remodeling complex, esBAF, is an essential component of the core pluripotency transcriptional network. Proc Natl Acad Sci USA 2009, 106:5187-5191.
  • [36]Hiratani I, Takebayashi S, Lu J, Gilbert DM: Replication timing and transcriptional control: beyond cause and effect–part II. Curr Opin Genet Dev 2009, 19:142-149.
  • [37]Lieberman-Aiden E, van Berkum NL, Williams L, Imakaev M, Ragoczy T, Telling A, Amit I, Lajoie BR, Sabo PJ, Dorschner MO, Sandstrom R, Bernstein B, Bender MA, Groudine M, Gnirke A, Stamatoyannopoulos J, Mirny LA, Lander ES, Dekker J: Comprehensive mapping of long-range interactions reveals folding principles of the human genome. Science 2009, 326:289-293.
  • [38]Dixon JR, Selvaraj S, Yue F, Kim A, Li Y, Shen Y, Hu M, Liu JS, Ren B: Topological domains in mammalian genomes identified by analysis of chromatin interactions. Nature 2012, 485:376-380.
  • [39]Kim SI, Bultman SJ, Kiefer CM, Dean A, Bresnick EH: BRG1 requirement for long-range interaction of a locus control region with a downstream promoter. Proc Natl Acad Sci USA 2009, 106:2259-2264.
  • [40]Takahashi K, Yamanaka S: Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 2006, 126:663-676.
  • [41]Lei I, Gao X, Sham MH, Wang Z: SWI/SNF component BAF250a regulates cardiac progenitor cell differentiation by modulating chromatin accessibility during second heart field development. J Biol Chem 2012, 287:24255-24262.
  • [42]Wang W, Cote J, Xue Y, Zhou S, Khavari PA, Biggar SR, Muchardt C, Kalpana GV, Goff SP, Yaniv M, Workman JL, Crabtree GR: Purification and biochemical heterogeneity of the mammalian SWI-SNF complex. EMBO J 1996, 15:5370-5382.
  • [43]Kagotani K, Nabeshima H, Kohda A, Nakao M, Taguchi H, Okumura K: Visualization of transcription-dependent association of imprinted genes with the nuclear matrix. Exp Cell Res 2002, 274:189-196.
  • [44]Weddington N, Stuy A, Hiratani I, Ryba T, Yokochi T, Gilbert DM: ReplicationDomain: a visualization tool and comparative database for genome-wide replication timing data. BMC Bioinforma 2008, 9:530. BioMed Central Full Text
  文献评价指标  
  下载次数:6次 浏览次数:7次