期刊论文详细信息
Epigenetics & Chromatin
Roles of cofactors and chromatin accessibility in Hox protein target specificity
Robert White1  Siew Woh Choo3  Steven Russell2  Aikaterini Chatzipli4  Sherif El-Sharnouby1  Ching Yew Beh3 
[1] Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge CB2 3DY, UK;Cambridge Systems Biology Centre, University of Cambridge, Tennis Court Road, Cambridge CB2 1QR, UK;Department of Oral Biology and Biomedical Sciences, Faculty of Dentistry, University of Malaya, Kuala Lumpur, 50603, Malaysia;Department of Genetics, University of Cambridge, Downing Street, Cambridge CB2 3EH, UK
关键词: Transcription factor;    Chromatin accessibility;    Hox proteins;   
Others  :  1235285
DOI  :  10.1186/s13072-015-0049-x
 received in 2015-08-11, accepted in 2015-12-08,  发布年份 2016
PDF
【 摘 要 】

Background

The regulation of specific target genes by transcription factors is central to our understanding of gene network control in developmental and physiological processes yet how target specificity is achieved is still poorly understood. This is well illustrated by the Hox family of transcription factors as their limited in vitro DNA-binding specificity contrasts with their clear in vivo functional specificity.

Results

We generated genome-wide binding profiles for three Hox proteins, Ubx, Abd-A and Abd-B, following transient expression in Drosophila Kc167 cells, revealing clear target specificity and a striking influence of chromatin accessibility. In the absence of the TALE class homeodomain cofactors Exd and Hth, Ubx and Abd-A bind at a very similar set of target sites in accessible chromatin, whereas Abd-B binds at an additional specific set of targets. Provision of Hox cofactors Exd and Hth considerably modifies the Ubx genome-wide binding profile enabling Ubx to bind at an additional novel set of targets. Both the Abd-B specific targets and the cofactor-dependent Ubx targets are in chromatin that is relatively DNase1 inaccessible prior to the expression of Hox proteins/Hox cofactors.

Conclusions

Our experiments demonstrate a strong role for chromatin accessibility in Hox protein binding and suggest that Hox protein competition with nucleosomes has a major role in Hox protein target specificity in vivo.

【 授权许可】

   
2016 Beh et al.

【 预 览 】
附件列表
Files Size Format View
20160113031953141.pdf 2206KB PDF download
Fig.7. 72KB Image download
Fig.6. 76KB Image download
Fig.5. 95KB Image download
Fig.4. 64KB Image download
Fig.3. 71KB Image download
Fig.2. 63KB Image download
Fig.1. 104KB Image download
【 图 表 】

Fig.1.

Fig.2.

Fig.3.

Fig.4.

Fig.5.

Fig.6.

Fig.7.

【 参考文献 】
  • [1]Mann RS, Lelli KM, Joshi R. Hox specificity: unique roles for cofactors and collaborators. Curr Top Dev Biol. 2009; 88:63-101.
  • [2]Rezsohazy R, Saurin AJ, Maurel-Zaffran C, Graba Y. Cellular and molecular insights into Hox protein action. Development. 2015; 142(7):1212-1227.
  • [3]Chan S-K, Jaffe L, Capovilla M, Botas J, Mann RS. The DNA binding specificity of Ultrabithorax is modulated by cooperative interactions with extradenticle, another homeoprotein. Cell. 1994; 78(4):603-615.
  • [4]Chang CP, Shen WF, Rozenfeld S, Lawrence HJ, Largman C, Cleary ML. Pbx proteins display hexapeptide-dependent cooperative DNA binding with a subset of Hox proteins. Genes Dev. 1995; 9(6):663-674.
  • [5]van Dijk MA, Murre C. Extradenticle raises the DNA binding specificity of homeotic selector gene products. Cell. 1994; 78(4):617-624.
  • [6]Jacobs Y, Schnabel CA, Cleary ML. Trimeric association of Hox and TALE homeodomain proteins mediates Hoxb2 hindbrain enhancer activity. Mol Cell Biol. 1999; 19(7):5134-5142.
  • [7]Ryoo HD, Mann RS. The control of trunk Hox specificity and activity by Extradenticle. Genes Dev. 1999; 13(13):1704-1716.
  • [8]Shen WF, Rozenfeld S, Kwong A, Kom ves LG, Lawrence HJ, Largman C. HOXA9 forms triple complexes with PBX2 and MEIS1 in myeloid cells. Mol Cell Biol. 1999; 19(4):3051-3061.
  • [9]Slattery M, Riley T, Liu P, Abe N, Gomez-Alcala P, Dror I et al.. Cofactor binding evokes latent differences in DNA binding specificity between Hox proteins. Cell. 2011; 147(6):1270-1282.
  • [10]Galant R, Walsh CM, Carroll SB. Hox repression of a target gene: extradenticle-independent, additive action through multiple monomer binding sites. Development. 2002; 129(13):3115-3126.
  • [11]Pinsonneault J, Florence B, Vaessin H, McGinnis W. A model for extradenticle function as a switch that changes HOX proteins from repressors to activators. EMBO J. 1997; 16(8):2032-2042.
  • [12]Berger MF, Badis G, Gehrke AR, Talukder S, Philippakis AA, Peña-Castillo L et al.. Variation in homeodomain DNA binding revealed by high-resolution analysis of sequence preferences. Cell. 2008; 133(7):1266-1276.
  • [13]Noyes MB, Christensen RG, Wakabayashi A, Stormo GD, Brodsky MH, Wolfe SA. Analysis of homeodomain specificities allows the family-wide prediction of preferred recognition sites. Cell. 2008; 133(7):1277-1289.
  • [14]Choo SW, White R, Russell S. Genome-wide analysis of the binding of the Hox protein Ultrabithorax and the Hox cofactor Homothorax in Drosophila. PLoS One. 2011; 6(4):e14778.
  • [15]Slattery M, Ma L, Négre N, White KP, Mann RS. Genome-wide tissue-specific occupancy of the Hox protein Ultrabithorax and Hox cofactor Homothorax in Drosophila. PLoS One. 2011; 6(4):e14686.
  • [16]Sorge S, Ha N, Polychronidou M, Friedrich J, Bezdan D, Kaspar P et al.. The cis-regulatory code of Hox function in Drosophila. EMBO J. 2012; 31(15):3323-3333.
  • [17]Li X-Y, Thomas S, Sabo P, Eisen M, Stamatoyannopoulos J, Biggin M. The role of chromatin accessibility in directing the widespread, overlapping patterns of Drosophila transcription factor binding. Genome Biol. 2011; 12(4):R34. BioMed Central Full Text
  • [18]Biggin Mark D: Animal transcription networks as highly connected, quantitative continua. Dev Cell 2011; 21:611–626.
  • [19]Krause HM, Klemenz R, Gehring WJ. Expression, modification, and localization of the fushi tarazu protein in Drosophila embryos. Genes Dev. 1988; 2:1021-1036.
  • [20]Little SC, Tkačik G, Kneeland TB, Wieschaus EF, Gregor T. The formation of the bicoid morphogen gradient requires protein movement from anteriorly localized mRNA. PLoS Biol. 2011; 9:e1000596.
  • [21]Walter J, Dever CA, Biggin MD. Two homeo domain proteins bind with similar specificity to a wide range of DNA sites in Drosophila embryos. Genes Dev. 1994; 8:1678-1692.
  • [22]Ades SE, Sauer RT. Specificity of minor-groove and major-groove interactions in a homeodomain-DNA complex. Biochemistry. 1995; 34(44):14601-14608.
  • [23]Gehring WJ, Qian YQ, Billeter M, Furukubo-Tokunaga K, Schier AF, Resendez-Perez D et al.. Homeodomain-DNA recognition. Cell. 1994; 78(2):211-223.
  • [24]Thomas S, Li X-Y, Sabo P, Sandstrom R, Thurman R, Canfield T et al.. Dynamic reprogramming of chromatin accessibility during Drosophila embryo development. Genome Biol. 2011; 12(5):R43. BioMed Central Full Text
  • [25]Filion Guillaume J, van Bemmel Joke G, Braunschweig U, Talhout W, Kind J, Ward Lucas D et al.. Systematic protein location mapping reveals five principal chromatin types in Drosophila cells. Cell. 2010; 145(1):160.
  • [26]Abe N, Dror I, Yang L, Slattery M, Zhou T, Bussemaker Harmen J et al.. Deconvolving the recognition of DNA shape from sequence. Cell. 2015; 161(2):307-318.
  • [27]Rohs R, West SM, Sosinsky A, Liu P, Mann RS, Honig B. The role of DNA shape in protein-DNA recognition. Nature. 2009; 461(7268):1248-1253.
  • [28]Workman JL, Kingston RE. Alteration of nucleosome structure as a mechanism of transcriptional regulation. Annu Rev Biochem. 1998; 67:545-579.
  • [29]Guertin MJ, Lis JT. Chromatin landscape dictates HSF binding to target DNA elements. PLoS Genetics. 2010;6(9).
  • [30]John S, Sabo PJ, Thurman RE, Sung M-H, Biddie SC, Johnson TA et al.. Chromatin accessibility pre-determines glucocorticoid receptor binding patterns. Nat Genet. 2011; 43(3):264-268.
  • [31]Soufi A, Donahue G, Zaret KS. Facilitators and impediments of the pluripotency reprogramming factors’ initial engagement with the genome. Cell. 2012; 151(5):994-1004.
  • [32]Carr A, Biggin MD. A comparison of in vivo and in vitro DNA-binding specificities suggests a new model for homeoprotein DNA binding in Drosophila embryos. EMBO J. 1999; 18(6):1598-1608.
  • [33]Rohs R, Jin X, West SM, Joshi R, Honig B, Mann RS. Origins of specificity in protein-DNA recognition. Annu Rev Biochem. 2010; 79(1):233-269.
  • [34]Joshi R, Passner JM, Rohs R, Jain R, Sosinsky A, Crickmore MA et al.. Functional specificity of a Hox protein mediated by the recognition of minor groove structure. Cell. 2007; 131(3):530-543.
  • [35]Miller JA, Widom J. Collaborative competition mechanism for gene activation in vivo. Mol Cell Biol. 2003; 23(5):1623-1632.
  • [36]Kuziora MA. Abdominal-B protein isoforms exhibit distinct cuticular transformations and regulatory activities when ectopically expressed in Drosophila embryos. Mech Dev. 1993; 42(3):125-137.
  • [37]Lamka ML, Boulet AM, Sakonju S. Ectopic expression of UBX and ABD-B proteins during Drosophila embryogenesis: competition, not a functional hierarchy, explains phenotypic suppression. Development. 1992; 116(4):841-854.
  • [38]Mann RS, Hogness DS. Functional dissection of Ultrabithorax proteins in Drosophila melanogaster. Cell. 1990; 60:597-610.
  • [39]Sanchez-Herrero E, Guerrero I, Sampedro J, Gonzalez-Reyes A. Developmental consequences of unrestricted expression of the abd-A gene of Drosophila. Mech Dev. 1994; 46(3):153-167.
  • [40]Casares F, Calleja M, Sanchez-Herrero E. Functional similarity in appendage specification by the ultrabithorax and abdominal-A Drosophila HOX genes. EMBO J. 1996; 15(15):3934-3942.
  • [41]Gonzalez-Reyes A, Morata G. The developmental effect of overexpressing a Ubx product in Drosophila embryos is dependent on its interactions with other homeotic products. Cell. 1990; 61(3):515-522.
  • [42]Struhl G, White RA. Regulation of the Ultrabithorax gene of Drosophila by other Bithorax complex genes. Cell. 1985; 43:507-519.
  • [43]McKay Daniel J, Lieb Jason D. A common set of DNA regulatory elements shapes Drosophila appendages. Dev Cell. 2013; 27:306-318.
  • [44]Gonzalez M, Martin-Ruiz I, Jimenez S, Pirone L, Barrio R, Sutherland JD. Generation of stable Drosophila cell lines using multicistronic vectors. Sci Rep. 2011;1.
  • [45]Benton R, Palacios IM, Johnston DS. Drosophila 14-3-3/PAR-5 is an essential mediator of PAR-1 function in axis formation. Dev Cell. 2002; 3(5):659-671.
  • [46]Langmead B, Trapnell C, Pop M, Salzberg S. Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol. 2009; 10(3):R25. BioMed Central Full Text
  • [47]Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N et al.. The Sequence Alignment/Map format and SAMtools. Bioinformatics. 2009; 25(16):2078-2079.
  • [48]Quinlan AR, Hall IM. BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics. 2010; 26(6):841-842.
  • [49]Zhang Y, Liu T, Meyer CA, Eeckhoute J, Johnson DS, Bernstein BE et al.. Model-based analysis of ChIP-Seq (MACS). Genome Biol. 2008; 9(9):R137. BioMed Central Full Text
  • [50]Heinz S, Benner C, Spann N, Bertolino E, Lin YC, Laslo P et al.. Simple combinations of lineage-determining transcription factors prime cis-regulatory elements required for macrophage and B cell identities. Mol Cell. 2010; 38(4):576-589.
  • [51]Machanick P, Bailey TL. MEME-ChIP: motif analysis of large DNA datasets. Bioinformatics. 2011; 27(12):1696-1697.
  • [52]Stojnic R, Diez D. PWMEnrich: PWM enrichment analysis. 4.2.0 ed2014.
  • [53]Pages H, Aboyoun P, Gentleman R, DebRoy S. Biostrings: String objects representing biological sequences, and matching algorithms. 2.34.1 ed 2014.
  • [54]Grant CE, Bailey TL, Noble WS. FIMO: scanning for occurrences of a given motif. Bioinformatics. 2011; 27(7):1017-1018.
  • [55]Zhou T, Yang L, Lu Y, Dror I, Dantas Machado AC, Ghane T et al.. DNAshape: a method for the high-throughput prediction of DNA structural features on a genomic scale. Nucleic Acids Res. 2013; 41:W56-W62.
  • [56]Aspland SE, White RA. Nucleocytoplasmic localisation of extradenticle protein is spatially regulated throughout development in Drosophila. Development. 1997; 124(3):741-747.
  • [57]Mahony S, Benos PV. STAMP: a web tool for exploring DNA-binding motif similarities. Nucleic Acids Res. 2007; 35(suppl 2):W253-W258.
  文献评价指标  
  下载次数:21次 浏览次数:3次