期刊论文详细信息
Lipids in Health and Disease
Effect of conjugated linoleic acid on inhibition of prolyl hydroxylase 1 in hearts of mice
Defa Li2  Jize Zhang1 
[1] National Key Laboratory of Animal Nutrition, College Animal Science and Technology, China Agricultural University, Beijing 100193, People's Republic of China;College Animal Science and Technology, 2-Yuan-Ming-Yuan West Rd., Haidian District, Beijing 100193, China
关键词: PPARα;    PDK4;    HIF-2α;    CLA;   
Others  :  1160359
DOI  :  10.1186/1476-511X-11-22
 received in 2011-12-17, accepted in 2012-02-07,  发布年份 2012
PDF
【 摘 要 】

Background

Results from different trails have provided evidence of protective effects of cis-9,trans-11-conjugated linoleic acid (CLA) on cardiovascular diseases. But the inhibition of prolyl hydroxylase 1 (PHD1) associated with induction of hypoxia inducible factors (HIFs) by CLA in these protective effects has never been reported before. The objective of this study was to evaluate if the two predominant cis-9,trans-11 (c9, t11), trans-10,cis-12 (t10, c12) CLA isomers and mixture of these two isomers can inhibit PHD1 with induction of HIFs in myocardium in mice and subsequent effects on myocardium metabolism.

Results

CLA mixture and c9, t11 CLA inhibited PHD1 protein expression and increased the levels of protein and mRNA in HIF-2α in myocardium in mice. Meanwhile, CLA mixture and c9, t11 CLA also elevated the expression of HIF related transcriptional factors like PDK4 and PPARα. The reprogramming of basal metabolism in myocardium in mice was shown on increasing of GLUT4 gene expression by c9, t11 CLA supplemented group. UCP2 was increased by CLA mixture and c9, t11 CLA for attenuating production of ROS.

Conclusion

CLA mixture and c9, t11 CLA could inhibit PHD1 and induce HIF-2α in myocardium in mice, which is associated with upregulation of PDK4 by activation of PPARα. This process also implies a reprogramming of basal metabolism and oxidative damage protection in myocardium in mice. All the effects shown in hearts of mice are due to c9, t11 CLA but not t10, c12 CLA.

【 授权许可】

   
2012 Zhang and Li; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20150410102612753.pdf 1668KB PDF download
Figure 4. 55KB Image download
Figure 3. 32KB Image download
Figure 2. 51KB Image download
Figure 1. 65KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

【 参考文献 】
  • [1]Global atlas on cardiovascular disease prevention and control: WHO; World Heart Federation; World Stroke Organization. 2011.
  • [2]Maxwell: Hypoxia-inducible factor as a physiological regulator. Exp Physiol 2005, 90(6):791-797.
  • [3]Wiesener MS, Maxwell PH: HIF and oxygen sensing; as important to life as the air we breathe? Ann Med 2003, 35(3):183-190.
  • [4]Jaakkola P, Mole DR, Tian YM, Wilson MI, Gielbert J, Gaskell SJ, Kriegsheim A, Hebestreit HF, Mukherji M, Schofield CJ, Maxwell PH, Pugh CW, Ratcliff PJ: Targeting of HIF-alpha to the von Hippel-Lindau ubiquitylation complex by O2-regulated prolyl hydroxylation. Science 2001, 292(5516):468-472.
  • [5]Aragonés J, Schneider M, Van Geyte K, Fraisl P, et al.: Deficiency or inhibition of oxygen sensor Phd1 induces hypoxia tolerance by reprogramming basal metabolism. Nat Genet 2008, 40:170-180.
  • [6]Epstein AC, Gleadle JM, McNeill LA, Hewitson KS, O'Rourke J, Mole DR, Mukherji M, Metzen E, Wilson MI, Dhanda A, Tian YM, Masson N, Hamilton DL, Jaakkola P, Barstead R, Hodgkin J, Maxwell PH, Pugh CW, Schofield CJ, Ratcliffe PJ: C. Elegans EGL-9 and mammalian homologs define a family of dioxygenases that regulate HIF by prolyl hydroxylation. Cell 2001, 107(1):43-54.
  • [7]Hon WC, Wilson MI, Harlos K, Claridge TDW, Schofield CJ, Pugh CW, Maxwell PH, Ratcliffe PJ, Stuart DI, Jones EY: Structural basis for the recognition of hydroxyproline in HIF-1 alpha by pVHL. Nature 2002, 417:975-978.
  • [8]Ivan M, Kondo K, Yang H, Kim W, Valiando J, Ohh M, Salic A, Asara JM, Lane WS, Kaelin WG: HIFα targeted for VHL-mediated destruction by proline hydroxylation: implications for O2 sensing. Science 2001, 292(5516):464-468.
  • [9]Maxwell PH, Wiesener MS, Chang GW, Clifford SC, Vaux EC, Cockman ME, Wykoff CC, Pugh CW, Maher ER, Ratcliffe RJ: The tumour suppressor protein VHL targets hypoxia-inducible factors for oxygen-dependent proteolysis. Nature 1999, 399:271-275.
  • [10]Ohh M, Park CW, Ivan M, Hoffman MA, Kim TY, Huang LE, Pavletich N, Chau V, Kaelin WG: Ubiquitination of hypoxia-inducible factor requires direct binding to the beta-domain of the von Hippel-Lindau protein. Nat Cell Biol 2000, 2(7):423-427.
  • [11]Kaelin William G Jr, Ratcliffe Peter J: Oxygen Sensing by Metazoans: The Central Role of the HIF Hydroxylase Pathway. Mol Cell 2008, 30(4):393-402.
  • [12]Giaccia A, Siim BG, Johnson RS: HIF-1 as a target for drug development. Nat Rev Drug Discov 2003, 2(10):803-811.
  • [13]Hewitson KS, Schofield CJ: The HIF pathway as a therapeutic target. Drug Discov Today 2004, 9(16):704-711.
  • [14]Kepler CR, Hirons KP, McNeill JJ, Tove SB: Intermediates and products of biohydrogenation of linoleic acid by Butyrivibrio fibrisolven. J Biol Chem 1966, 241:1350-1354.
  • [15]Priza MW, Park Y, Cook ME: The biologically active isomers of conjugated linoleic acid. Prog Lipid Res 2001, 40(4):283-298.
  • [16]Priza MW, Park Y, Cook ME: Mechanisms of action of conjugated linoleic acid: evidence and speculation. Proc Soc Exp Biol Med 2000, 223(1):8-13.
  • [17]Lee KW, Lee HJ, Cho HY, Kim YJ: Role of the conjugated linoleic acid in the prevention of cancer. Crit Rev Food Sci Nutr 2005, 45(2):251-258.
  • [18]Kelly NS, Hubbard NE, Erickson KL: Conjugated linoleic acid isomers and cancer. J Nutr 2007, 137(12):2599-2607.
  • [19]Ip C, Dong Y, Ip MM, Banni S, Carta G, Angioni E, Murru E, Spada S, Melis MP, Saebo A: Conjugated linoleic acid isomers and mammary cancer prevention. Nutr Cancer 2002, 43(1):52-58.
  • [20]Masso-Welch PA, Zangani D, Ip C, Vaughan MM, Shoemaker S, Ramirez RA, Ip MM: Inhibition of angiogenesis by the cancer chemopreventive agent conjugated linoleic acid. Cancer Res 2002, 62(15):4383-4389.
  • [21]Lee KN, Pariza MW, Ntambi JM: Conjugated linoleic acid decreases hepatic stearoyl-CoA desaturase mRNA expression. Biochem Biophys Res Commun 1998, 248(3):817-821.
  • [22]Kritchevsky D, Tepper SA, Wright S, Czarnecki SK, Wilson TA, Nicolosi RJ: Conjugated linoleic acid isomer effects in atherosclerosis: growth and regression of lesions. Lipids 2004, 39(7):611-616.
  • [23]Park Y, Pariza MW: Mechanisms of body fat modulation by conjugated linoleic acid (CLA). Food Res Int 2007, 40(3):311-323.
  • [24]Arbonés-Mainar JM, Navarro MA, Acín S, Guzmán MA, Arnal C, Surra JC, Carnicer R, Roche HM, Osada J: Tran-10, ci-12- and ci-9, tran-11-conjugated linoleic acid isomers selectively modify HDL-apolipoprotein composition in apolipoprotein E knockout mice. J Nutr 2006, 136(2):353-359.
  • [25]Park Y, Storkson JM, Albright KJ, Liu W, Pariza MW: Evidence that the trans-10, cis-12 isomer of conjugated linoleic acid induces body composition changes in mice. Lipids 1999, 34(3):235-241.
  • [26]Cook ME, Miller CC, Park Y, Pariza M: Immune modulation by altered nutrient metabolism: nutritional control of immune-induced growth depression. Poult Sci 1993, 72(7):1301-1305.
  • [27]Bassaganya-Riera J, Hontecillas R, Beitz DC: Colonic anti-inflammatory mechanisms of conjugated linoleic acid. Clin Nutr 2002, 21(6):451-459.
  • [28]Luongo D, Bergamo P, Rossi M: Effects of conjugated linoleic acid on growth and cytokine expression in Jurkat T cells. Immunol Lett 2003, 90(2-3):195-201.
  • [29]Poirier H, Shapiro JS, Kim RJ, Lazar MA: Nutritional supplementation with tran-10, ci-12-conjugated linoleic acid induces inflammation of white adipose tissue. Diabetes 2006, 55(6):1634-1641.
  • [30]Tsuboyama-Kasaoka N, Takahashi M, Tanemura K, Kim HJ, Tange T, Okuyama H, Kasai M, Ikemoto S, Ezaki O: Conjugated linoleic acid supplementation reduces adipose tissue by apoptosis and develops lipodystrophy in mice. Diabetes 2000, 49(9):1534-1542.
  • [31]Clément L, Poirier H, Niot I, Bocher V, Guerre-Millo M, Krief S, Staels B, Besnard P: Dietary trans-10, cis-12 conjugated linoleic acid induces hyperinsulinemia and fatty liver in the mouse. J Lipid Res 2002, 43(9):1400-1409.
  • [32]Navarro MA, Badimon L, Rodriguez C, Arnal C, Noone EJ, Roche HM, Osada J, Martinez-Gonzalez J: Trans-10, cis-12-CLA dysregulate lipid and glucose metabolism and induce hepatic NR4A receptors. Front Biosci (Elite Ed) 2010, 2:87-97.
  • [33]Smit LA, Baylin A, Campos H: Conjugated linoleic acid in adipose tissue and risk of myocardial infarction. Am J Clin Nutr 2010, 92(1):34-40.
  • [34]West DB, Delany JP, Camet PM, Blohm F, Truett AA, Scimeca J: Effects of conjugated linoleic acid on body fat and energy metabolism in the mouse. Am J Physiol 1998, 275(3 Pt 2):R667-672.
  • [35]Park Y, Albright KJ, Liu W, Storkson JM, Cook ME, Pariza MW: Effect of conjugated linoleic acid on body composition in mice. Lipids 1997, 32(8):853-858.
  • [36]Terpstra AH, Beynen AC, Everts H, Kocsis S, Katan MB, Zock PL: The decrease in body fat in mice fed conjugated linoleic acid is due to increases in energy expenditure and energy loss in the excreta. J Nutr 2002, 132:940-945.
  • [37]Bissonauth V, Chouinard Y, Marin J, Leblanc N, Richard D, Jacques H: The effects of t10, c12 CLA isomer compared with c9, t11 CLA isomer on lipid metabolism and body composition in hamsters. J Nutr Biochem 2006, 17(9):597-603.
  • [38]de Deckere EA, van Amelsvoort JM, McNeill GP, Jones P: Effects of conjugated linoleic acid (CLA) isomers on lipid levels and peroxisome proliferation in the hamster. Br J Nutr 1999, 82(4):309-317.
  • [39]Sisk MB, Hausman DB, Martin RJ, Azain MJ: Dietary conjugated linoleic acid reduces adiposity in lean but not obese Zucker rats. J Nutr 2001, 131:1668-1674.
  • [40]Berra E, Ginouvès A, Pouysségur J: The hypoxia-inducible-factor hydroxylases bring fresh air into hypoxia signaling. EMBO Rep 2006, 7(1):41-45.
  • [41]Lomb David J, Desouza Lynette A, Franklin James L, Freeman Robert S: Prolyl hydroxylase inhibitors depend on extracellular glucose and Hypoxia-Inducible Factor (HIF)-2 to inhibit cell death caused by Nerve Growth Factor (NGF) deprivation: evidence that HIF-2 has a role in NGF-promoted survival of sympathetic neurons. Mol Pharmacol 2009, 75(5):1198-1209.
  • [42]Ivan M, Haberberger T, Gervasi DC, Michelson KS, Gunzler V, Kondo K, Yang H, Sorokina I, Conaway RC, Conaway JW, Kaelin WG Jr: Biochemical purification and pharmacological inhibition of a mammalian prolyl hydroxylase acting on hypoxia-inducible factor. Proc Natl Acad Sci 2002, 99:13459-13464.
  • [43]Warnecke C, Griethe W, Weidemann A, Jurgensen JS, Willam C, Bachmann S, Ivashchenko Y, Wagner I, Frei U, Wiesener M, Eckardt KU: Activation of the hypoxia-inducible factor-pathway and stimulation of angiogenesis by application of prolyl hydroxylase inhibitors. FASEB J 2003, 17(9):1186-1188.
  • [44]Hyvarinen Jaana, Hassinen IlmoE, Sormunen Raija, Maki JoniM, Kivirikko KariI, Koivunen Peppi, Myllyharju Johanna: Hearts of hypoxia-inducible factor prolyl 4-hydroxylase-2 hypomorphic mice show protection against acute ischemia-reperfusion injury. J Biol Chem, in press.
  • [45]Natarajan R, Salloum FN, Fisher BJ, Kukreja RC, Fowler AA: Hypoxia inducible factor-1 activation by prolyl 4-hydroxylase-2 gene silencing attenuates myocardial ischemia reperfusion injury. Circ Res 2006, 98(1):133-140.
  • [46]Forsyth NR, Kay A, Hampson K, Downing A, Talbot R, McWhir J: Transcriptome alterations due to physiological normoxic (2% O2) culture of human embryonic stem cells. Regen Med 2008, 3:817-833.
  • [47]Westfall SD, Sachdev S, Das P, Hearne LB, Hannink M, Roberts RM, Ezashi T: Identification of oxygen-sensitive transcriptional programs in human embryonic stem cells. Stem Cells Dev 2008, 17:869-882.
  • [48]Huang LE, Gu J, Schau M, Bunn HF: Regulation of hypoxia-inducible factor 1alpha is mediated by an O2-dependent degradation domain via the ubiquitin-proteasome pathway. Proc Natl Acad Sci USA 1998, 95(14):7987-7992.
  • [49]Lang KJ, Kappel A, Goodall GJ: Hypoxia-inducible factor-1alpha mRNA contains an internal ribosome entry site that allows efficient translation during normoxia and hypoxia. Mol Biol Cell 2002, 13(5):1792-1801.
  • [50]Kelly D: Hypoxic reprogramming. Nat Genet 2008, 40(2):132-134.
  • [51]Wu P, Peters JM, Harris RA: Adaptive increase in pyruvate dehydrogenase kinase 4 during starvation is mediated by peroxisome proliferator-activated receptor alpha. Biochem Biophys Res Commun 2001, 287(2):391-396.
  • [52]Buck MJ, Squire TL, Andrews MT: Coordinate expression of the PDK4 gene: a means of regulating fuel selection in a hibernating mammal. Physiol Genomics 2002, 8(1):5-13.
  • [53]Park Y, Park Y: Conjugated nonadecadienoic acid is more potent than conjugated linoleic acid on body fat reduction. J Nutr Biochem 2010, 21(8):764-773.
  • [54]McGarry D, Brown NF: The Mitochondrial Carnitine Palmitoyltransferase System-From Concept to Molecular Analysis. Eur J Biochem 1997, 244(1):1-14.
  • [55]Brand MD, Esteves TC: Physiological functions of the mitochondrial uncoupling proteins UCP2 and UCP3. Cell Metab 2005, 2(2):85-93.
  • [56]Brand MD, Pamplona R, Portero-Otín M, Requena JR, Roebuck SJ, Buckingham JA, Clapham JC, Cadenas S: Oxidative damage and phospholipid fatty acyl composition in skeletal muscle mitochondria from mice underexpressing or overexpressing uncoupling protein 3. Biochem J 2002, 368(Pt 2):597-603.
  • [57]Casteilla L, Rigoulet M, Pénicaud L: Mitochondrial ROS metabolism: modulation by uncoupling proteins. IUBMB life 2001, 52(3-5):181-188.
  • [58]Guzy RD, Schumacker PT: Oxygen sensing by mitochondria at complex III: the paradox of increased reactive oxygen species during hypoxia. Exp Physiol 2006, 91(5):807-819.
  • [59]Arsenijevic D, Onuma H, Pecqueur C, Raimbault S, Manning BS, Miroux B, Couplan E, Alves-Guerra MC, Goubern M, Surwit R, Bouillaud F, Richard D, Collins S, Ricquier D: Disruption of the uncoupling protein-2 gene in mice reveals a role in immunity and reactive oxygen species production. Nat Genet 2000, 26(4):435-439.
  • [60]Cortez-Pinto H, Zhi Lin H, Qi Yang S, Odwin Da Costa S, Diehl AM: Lipids up-regulate uncoupling protein 2 expression in rat hepatocytes. Gastroenterol 1999, 116(5):1184-1193.
  文献评价指标  
  下载次数:9次 浏览次数:2次