期刊论文详细信息
EvoDevo
Differences in chemosensory response between eyed and eyeless Astyanax mexicanus of the Rio Subterráneo cave
Sylvie Rétaux2  Stéphane Père2  Laurent Legendre2  Hélène Hinaux2  Maryline Blin2  Masato Yoshizawa3  Luis Espinasa1  Alexandre Alié2  Jonathan Bibliowicz2 
[1] School of Science, Marist College, Poughkeepsie, NY, USA;Equipe Développement Evolution du Cerveau Antérieur, UPR3294 N&D, CNRS, Institut Alfred Fessard, Gif-sur-Yvette F-91198, France;Department of Biology, University of Maryland, College Park, MD, USA
关键词: Vision;    Sensory system;    Olfaction;    Micos;    Hybrid population;    Evolution;    Cavefish;    Behavior;   
Others  :  806146
DOI  :  10.1186/2041-9139-4-25
 received in 2013-07-01, accepted in 2013-07-26,  发布年份 2013
PDF
【 摘 要 】

Background

In blind cave-dwelling populations of Astyanax mexicanus, several morphological and behavioral shifts occurred during evolution in caves characterized by total and permanent darkness. Previous studies have shown that sensory systems such as the lateral line (mechanosensory) and taste buds (chemosensory) are modified in cavefish. It has long been hypothesized that another chemosensory modality, the olfactory system, might have evolved as well to provide an additional mechanism for food-searching in troglomorphic Astyanax populations.

Findings

During a March 2013 cave expedition to the Sierra de El Abra region of San Luís Potosi, Mexico, we tested chemosensory capabilities of the Astyanax mexicanus of the Rio Subterráneo cave. This cave hosts a hybrid population presenting a wide range of troglomorphic and epigean mixed phenotypes. During a behavioral test performed in situ in the cave, a striking correlation was observed between the absence of eyes and an increased attraction to food extract. In addition, eyeless troglomorphic fish possessed significantly larger naris size than their eyed, nontroglomorphic counterparts.

Conclusions

Our findings suggest that chemosensory capabilities might have evolved in cave-dwelling Astyanax mexicanus and that modulation of naris size might at least partially underlie this likely adaptive change.

【 授权许可】

   
2013 Bibliowicz et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20140708090625345.pdf 1744KB PDF download
Figure 3. 85KB Image download
Figure 2. 142KB Image download
Figure 1. 251KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

【 参考文献 】
  • [1]Protas M, Jeffery WR: Evolution and development in cave animals: from fish to crustaceans. Wiley Interdiscipl Rev 2013, 1:823-845.
  • [2]McCauley DW, Hixon E, Jeffery WR: Evolution of pigment cell regression in the cavefish Astyanax: a late step in melanogenesis. Evol Dev 2004, 6:209-218.
  • [3]Sharma S, Coombs S, Patton P, Burt De Perera T: The function of wall-following behaviors in the Mexican blind cavefish and a sighted relative, the Mexican tetra (Astyanax). J Comp Physiol Neuroethol Sens Neural Behav Physiol 2009, 195:225-240.
  • [4]Yamamoto Y, Byerly MS, Jackman WR, Jeffery WR: Pleiotropic functions of embryonic sonic hedgehog expression link jaw and taste bud amplification with eye loss during cavefish evolution. Dev Biol 2009, 330:200-211.
  • [5]Yoshizawa M, Goricki S, Soares D, Jeffery WR: Evolution of a behavioral shift mediated by superficial neuromasts helps cavefish find food in darkness. Curr Biol 2011, 20:1631-1636.
  • [6]Gross JB: The complex origin of Astyanax cavefish. BMC Evol Biol 2012, 12:105. BioMed Central Full Text
  • [7]Pottin K, Hinaux H, Rétaux S: Restoring eye size in Astyanax mexicanus blind cavefish embryos through modulation of the Shh and Fgf8 forebrain organising centres. Development 2011, 138:2467-2476.
  • [8]Rétaux S, Pottin K, Alunni A: Shh and forebrain evolution in the blind cavefish Astyanax mexicanus. Biol Cell 2008, 100:139-147.
  • [9]Yamamoto Y, Stock DW, Jeffery WR: Hedgehog signalling controls eye degeneration in blind cavefish. Nature 2004, 431:844-847.
  • [10]Varatharasan N, Croll RP, Franz-Odendaal T: Taste bud development and patterning in sighted and blind morphs of Astyanax mexicanus. Dev Dyn 2009, 238:3056-3064.
  • [11]Protas M, Tabansky I, Conrad M, Gross JB, Vidal O, Tabin CJ, Borowsky R: Multi-trait evolution in a cave fish, Astyanax mexicanus. Evol Dev 2008, 10:196-209.
  • [12]Mitchell RW, Russell WH, Elliott WR: Mexican eyeless characin fishes, genus Astyanax: environment, distribution, and evolution. Spec Publ Mus Texas Tech Univ 1977, 12:1-89.
  • [13]Wilkens H, Burns RJ: A new Anoptichthys cave population (Characidae, Pisces). Ann Spéléol 1972, 27:263-270.
  • [14]Bradic M, Beerli P, García-De León FJ, Esquivel-Bobadilla S, Borowsky RL: Gene flow and population structure in the Mexican blind cavefish complex (Astyanax mexicanus). BMC Evol Biol 2012, 12:9. BioMed Central Full Text
  • [15]Strecker U, Hausdorf B, Wilkens H: Parallel speciation in Astyanax cave fish (Teleostei) in northern Mexico. Mol Phylogenet Evol 2012, 62:62-70.
  • [16]Schemmel C: Studies on the genetics of feeding behaviour in the cave fish Astyanax mexicanus f. Anoptichthys: an example of apparent monofactorial inheritance by polygenes. Z Tierpsychol 1980, 53:9-22.
  • [17]Hüppop K: Food-finding ability in cave fish (Astyanax fasciatus). Int J Speleol 1987, 16:59-66.
  • [18]Hinaux H, Pottin K, Chalhoub H, Père S, Elipot Y, Legendre L, Rétaux S: A developmental staging table for Astyanax mexicanus surface fish and Pachón cavefish. Zebrafish 2011, 8:155-165.
  文献评价指标  
  下载次数:79次 浏览次数:47次