期刊论文详细信息
Cell & Bioscience
Mutual regulation between deubiquitinase CYLD and retroviral oncoprotein Tax
Shao-Cong Sun1  Minying Zhang1  Xuefeng Wu1 
[1] Department of Immunology, The University of Texas MD Anderson Cancer Center, 7455 Fannin Street, Box 902, Houston TX 77030, USA
关键词: NF-κB;    IKK;    ubiquitination;    Tax;    HTLV;    CYLD;   
Others  :  793961
DOI  :  10.1186/2045-3701-1-27
 received in 2011-06-23, accepted in 2011-08-08,  发布年份 2011
PDF
【 摘 要 】

Background

Oncoprotein Tax, encoded by the human T-cell leukemia virus type 1 (HTLV1), persistently induces NF-κB activation, which contributes to HTLV1-mediated T-cell transformation. Recent studies suggest that the signaling function of Tax requires its ubiquitination, although how the Tax ubiquitination is regulated remains unclear.

Results

We show here that the deubiquitinase CYLD physically interacts with Tax and negatively regulates the ubiquitination of this viral protein. This function of CYLD is associated with inhibition of Tax-mediated activation of IKK although not that of Tak1. Interestingly, CYLD undergoes constitutive phosphorylation in HTLV1-transformed T cells, a mechanism known to inactivate the catalytic activity of CYLD. Consistently, a phospho-mimetic CYLD mutant fails to inhibit Tax ubiquitination.

Conclusion

These findings suggest that CYLD negatively regulates the signaling function of Tax through inhibition of Tax ubiquitination. Conversely, induction of CYLD phosphorylation may serve as a mechanism by which HTLV1 overrides the inhibitory function of CYLD, leading to the persistent activation of NF-κB.

【 授权许可】

   
2011 Wu et al; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20140705061338686.pdf 2029KB PDF download
Figure 5. 50KB Image download
Figure 4. 27KB Image download
Figure 3. 35KB Image download
Figure 2. 27KB Image download
Figure 1. 69KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

【 参考文献 】
  • [1]Yoshida M: Multiple viral strategies of HTLV-1 for dysregulation of cell growth control. Annu Rev Immunol 2001, 19:475-496.
  • [2]Matsuoka M: Human T-cell leukemia virus type I (HTLV-I) infection and the onset of adult T-cell leukemia (ATL). Retrovirology 2005, 2:27. BioMed Central Full Text
  • [3]Shuh M, Beilke M: The human T-cell leukemia virus type 1 (HTLV-1): new insights into the clinical aspects and molecular pathogenesis of adult T-cell leukemia/lymphoma (ATLL) and tropical spastic paraparesis/HTLV-associated myelopathy (TSP/HAM). Microsc Res Tech 2005, 68:176-196.
  • [4]Matsuoka M, Jeang KT: Human T-cell leukaemia virus type 1 (HTLV-1) infectivity and cellular transformation. Nat Rev Cancer 2007, 7:270-280.
  • [5]Sun SC, Yamaoka S: Activation of NF-κB by HTLV-I and implications for cell transformation. Oncogene 2005, 24:5952-5964.
  • [6]Karin M, Ben-Neriah Y: Phosphorylation meets ubiquitination: the control of NF-[kappa]B activity. Annu Rev Immunol 2000, 18:621-663.
  • [7]Hayden MS, Ghosh S: Shared principles in NF-kappaB signaling. Cell 2008, 132:344-362.
  • [8]Chu Z-L, DiDonato JA, Hawiger J, Ballard DW: The Tax oncoprotein of human T-cell leukemia virus type 1 associates with and persistently activates IκB kinases containing IKKα and IKKβ. J Biol Chem 1998, 273:15891-15894.
  • [9]Uhlik M, Good L, Xiao G, Harhaj EW, Zandi E, Karin M, Sun S-C: NF-kappaB-inducing kinase and IkappaB kinase participate in human T-cell leukemia virus I Tax-mediated NF-kappaB activation. J Biol Chem 1998, 273:21132-21136.
  • [10]Yin M-J, Christerson LB, Yamamoto Y, Kwak Y-T, Xu S, Mercurio F, Barbose M, Cobb MH, Gaynor RB: HTLV-I Tax protein binds to MEKK1 to stimulate IkB kinase activity and NF-κB activation. Cell 1998, 93:875-884.
  • [11]Fu J, Qu Z, Yan P, Ishikawa C, Aqeilan RI, Rabson AB, Xiao G: The tumor suppressor gene WWOX links the canonical and noncanonical NF-κB pathways in HTLV-I Tax-mediated tumorigenesis. Blood 2011, 117:1652-1661.
  • [12]Qu Z, Xiao G: Human T-Cell Lymphotropic Virus: A Model of NF-κB-Associated Tumorigenesis. Viruses 2011, 3:714-749.
  • [13]Chu Z-L, Shin Y-A, Yang J-M, DiDonato JA, Ballard DW: IKKγ mediates the interaction of cellular IκB kinases with the Tax transforming protein of human T cell leukemia virus type 1. J Biol Chem 1999, 274:15297-15300.
  • [14]Harhaj EW, Sun S-C: IKKγ serves as a docking subunit of the IκB kinase and mediates interaction of IKK with the human T-cell leukemia virus Tax protein. J Biol Chem 1999, 274:22911-22914.
  • [15]Jin D-Y, Giordano V, Kibler KV, Nakano H, Jeang K-T: Role of adaptor function in oncoprotein-mediated activation of NF-κB: HTLV-I Tax interacts directly with IκB kinase g. J Biol Chem 1999, 274:17402-17405.
  • [16]Lamsoul I, Lodewick J, Lebrun S, Brasseur R, Burny A, Gaynor RB, Bex F: Exclusive ubiquitination and sumoylation on overlapping lysine residues mediate NF-kappaB activation by the human T-cell leukemia virus tax oncoprotein. Mol Cell Biol 2005, 25:10391-10406.
  • [17]Nasr R, Chiari E, El-Sabban M, Mahieux R, Kfoury Y, Abdulhay M, Yazbeck V, Hermine O, dT H, Pique C, Bazarbachi A: Tax ubiquitylation and sumoylation control critical cytoplasmic and nuclear steps of NF-kappaB activation. Blood 2006, 107:4021-4029.
  • [18]Harhaj NS, Sun SC, Harhaj EW: Activation of NF-kappa B by the human T cell leukemia virus type I (HTLV-I) tax oncoprotein is associated with ubiquitin-dependent relocalization of IKK. J Biol Chem 2007, 282:4185-4192.
  • [19]Liu S, Chen ZJ: Expanding role of ubiquitination in NF-κB signaling. Cell Res 2011, 21:6-21.
  • [20]Sun SC: Deubiquitylation and regulation of the immune response. Nat Rev Immunol 2008, 8:501-511.
  • [21]Komander D, Lord CJ, Scheel H, Swift S, Hofmann K, Ashworth A, Barford D: The structure of the CYLD USP domain explains its specificity for Lys63-linked polyubiquitin and reveals a B Box module. Mol Cell 2008, 29:451-464.
  • [22]Reiley W, Zhang M, Wu X, Graner E, Sun S-C: Regulation of the deubiquitinating enzyme CYLD by IkappaB kinase gamma-dependent phosphorylation. Mol Cell Biol 2005, 25:3886-3895.
  • [23]Shembade N, Harhaj NS, Yamamoto M, Akira S, Harhaj EW: The human T-cell leukemia virus type 1 Tax oncoprotein requires the ubiquitin-conjugating enzyme Ubc13 for NF-kappaB activation. J Virol 2007, 81:13735-13742.
  • [24]Kovalenko A, Chable-Bessia C, Cantarella G, Israel A, Wallach D, Courtois G: The tumour suppressor CYLD negatively regulates NF-kappaB signalling by deubiquitination. Nature 2003, 424:801-805.
  • [25]Trompouki E, Hatzivassiliou E, Tsichritzis T, Farmer H, Ashworth A, Mosialos G: CYLD is a deubiquitinating enzyme that negatively regulates NF-kappaB activation by TNFR family members. Nature 2003, 424:793-796.
  • [26]Brummelkamp TR, Nijman SM, Dirac AM, Bernards R: Loss of the cylindromatosis tumour suppressor inhibits apoptosis by activating NF-kappaB. Nature 2003, 424:797-801.
  • [27]Ninomiya-Tsuji J, Kishimoto K, Hiyama A, Inoue J, Cao Z, Matsumoto K: The kinase TAK1 can activate the NIK-I kappaB as well as the MAP kinase cascade in the IL-1 signalling pathway. Nature 1999, 398:252-256.
  • [28]Takaesu G, Surabhi RM, Park KJ, Ninomiya-Tsuji J, Matsumoto K, Gaynor RB: TAK1 is critical for IkappaB kinase-mediated activation of the NF-kappaB pathway. J Mol Biol 2003, 326:105-115.
  • [29]Liu HH, Xie M, Schneider MD, Chen ZJ: Essential role of TAK1 in thymocyte development and activation. Proc Natl Acad Sci USA 2006, 103:11677-11682.
  • [30]Sato S, Sanjo H, Takeda K, Ninomiya-Tsuji J, Yamamoto M, Kawai T, Matsumoto K, Takeuchi O, Akira S: Essential function for the kinase TAK1 in innate and adaptive immune responses. Nat Immunol 2005, 6:1987-1095.
  • [31]Shim JH, Xiao C, Paschal AE, Bailey ST, Rao P, Hayden MS, Lee KY, Bussey C, Steckel M, Tanaka N, et al.: TAK1, but not TAB1 or TAB2, plays an essential role in multiple signaling pathways in vivo. Genes Dev 2005, 19:2668-2681.
  • [32]Wan YY, Chi H, Xie M, Schneider MD, Flavell RA: The kinase TAK1 integrates antigen and cytokine receptor signaling for T cell development, survival and function. Nat Immunol 2006, 7:851-858.
  • [33]Shambharkar PB, Blonska M, Pappu BP, Li H, You Y, Sakurai H, Darnay BG, Hara H, Penninger J, Lin X: Phosphorylation and ubiquitination of the IkappaB kinase complex by two distinct signaling pathways. EMBO J 2007, 26:1794-1805.
  • [34]Wu X, Sun SC: Retroviral oncoprotein Tax deregulates NF-κB by activating Tak1 and mediating Tak1-IKK physical association. EMBO Rep 2007, 8:510-515.
  • [35]Sun SC, Cesarman E: NF-κB as a Target for Oncogenic Viruses. Curr Top Microbiol Immunol 2011, 349:197-244.
  • [36]Yasunaga J, Lin FC, Lu X, Jeang K-T: Ubiquitin-specific peptidase 20 targets TRAF6 and human T cell leukemia virus type I Tax to negatively regulate NF-κB signaling. J Virol 2011, 85:6212-6219.
  • [37]Xiao G, Harhaj EW, Sun S-C: Domain-specific interaction with IKKγ is an essential step in Tax-mediated activation of IKK. J Biol Chem 2000, 275:34060-34067.
  • [38]Hutti JE, Shen RR, Abbott DW, Zhou AY, Sprott KM, Asara JM, Hahn WC, Cantley LC: Phosphorylation of the tumor suppressor CYLD by the breast cancer oncogene IKKepsilon promotes cell transformation. Mol Cell 2009, 34:461-472.
  • [39]Grassmann R, Berchtold S, Radant I, Alt M, Fleckenstein B, Sodroski JG, Haseltine WA, Ramstedt U: Role of human T-cell leukemia virus type I X region proteins in immortalization of primary human lymphocytes in culture. J Virol 1992, 66:4570-4575.
  • [40]Smith MR, Greene WC: Identification of HTLV-1 tax transactivator mutants exhibiting novel transcriptional phenotypes. Genes Dev 1990, 4:1875-1885.
  • [41]Xiao G, Harhaj EW, Sun SC: NF-kappaB-inducing kinase regulates the processing of NF-kappaB2 p100. Mol Cell 2001, 7:401-409.
  • [42]Shibuya H, Yamaguchi K, Shirakabe K, Tonegawa A, Gotoh Y, Ueno N, Irie K, Nishida E, Matsumoto K: TAB1: an activator of the TAK1 MAPKKK in TGF-beta signal transduction. Sciece 1996, 272:1179-1182.
  • [43]Xiao G, Cvijic ME, Fong A, Harhaj EW, Uhlik MT, Waterfield M, Sun SC: Retroviral oncoprotein Tax induces processing of NF-kappaB2/p100 in T cells: evidence for the involvement of IKKalpha. EMBO J 2001, 20:6805-6815.
  文献评价指标  
  下载次数:192次 浏览次数:23次