期刊论文详细信息
Journal of Clinical Bioinformatics
Protein co-expression network analysis (ProCoNA)
Shannon K McWeeney4  Michael G Katze6  Eric S Orwoll7  Richard D Smith2  Yoshihiro Kawaoka1  Ralph S Baric5  Arie Baratt7  David L Gibbs3 
[1] Department of Pathobiological Sciences, University of Wisconsin-Madison, 2015 Linden Dr, Madison, WI 53706, USA;Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA;Division of Bioinformatics and Computational Biology, Oregon Health & Science University, 3181 S.W. Sam Jackson Park Rd, Portland, OR 97239, USA;OHSU Knight Cancer Institute, Oregon Health & Science University, 3181 S.W. Sam Jackson Park Rd, Portland, OR 97239, USA;Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, 220 E Cameron Ave, Chapel Hill, NC 27514, USA;Department of Microbiology, School of Medicine, Box 357735, University of Washington, Seattle, WA 98195, USA;Oregon Clinical & Translational Research Institute, Oregon Health & Science University, 3181 S.W. Sam Jackson Park Rd, Portland, OR 97239, USA
关键词: Proteomics;    LC-MS;    Sarcopenia;    Virology;    Systems biology;    Networks;    Biological networks;    Biomarkers;   
Others  :  802891
DOI  :  10.1186/2043-9113-3-11
 received in 2013-02-22, accepted in 2013-05-23,  发布年份 2013
PDF
【 摘 要 】

Background

Biological networks are important for elucidating disease etiology due to their ability to model complex high dimensional data and biological systems. Proteomics provides a critical data source for such models, but currently lacks robust de novo methods for network construction, which could bring important insights in systems biology.

Results

We have evaluated the construction of network models using methods derived from weighted gene co-expression network analysis (WGCNA). We show that approximately scale-free peptide networks, composed of statistically significant modules, are feasible and biologically meaningful using two mouse lung experiments and one human plasma experiment. Within each network, peptides derived from the same protein are shown to have a statistically higher topological overlap and concordance in abundance, which is potentially important for inferring protein abundance. The module representatives, called eigenpeptides, correlate significantly with biological phenotypes. Furthermore, within modules, we find significant enrichment for biological function and known interactions (gene ontology and protein-protein interactions).

Conclusions

Biological networks are important tools in the analysis of complex systems. In this paper we evaluate the application of weighted co-expression network analysis to quantitative proteomics data. Protein co-expression networks allow novel approaches for biological interpretation, quality control, inference of protein abundance, a framework for potentially resolving degenerate peptide-protein mappings, and a biomarker signature discovery.

【 授权许可】

   
2013 Gibbs et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20140708032215853.pdf 1822KB PDF download
Figure 6. 57KB Image download
Figure 5. 133KB Image download
Figure 4. 40KB Image download
Figure 3. 46KB Image download
Figure 2. 57KB Image download
Figure 1. 119KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

【 参考文献 】
  • [1]Ideker T, Galitski T, Hood L: A new approach to decoding life: systems biology. Annu Rev Genomics Hum Genet 2001, 2:343-372.
  • [2]Tisoncik JR, Katze MG: What is systems biology. Future Microbiol 2010, 5:139.
  • [3]Kellam P: Post-genomic virology: the impact of bioinformatics, microarrays and proteomics on investigating host and pathogen interactions. Rev Med Virol 2001, 11:313-329.
  • [4]Ideker T, Sharan R: Protein networks in disease. Genome Res 2008, 18:644-652.
  • [5]Domon B, Aebersold R: Mass spectrometry and protein analysis. Science Signalling 2006, 312:212.
  • [6]Domon B, Aebersold R: Challenges and Opportunities in Proteomics Data Analysis. Mol Cell Proteomics 2006, 5:1921-1926.
  • [7]Smith RD, Anderson GA, Lipton MS, Pasa-Tolic L, Shen Y, Conrads TP, Veenstra TD, Udseth HR: An accurate mass tag strategy for quantitative and high‒throughput proteome measurements. Proteomics 2002, 2:513-523.
  • [8]Zimmer JSD, Monroe ME, Qian W-J, Smith RD: Advances in proteomics data analysis and display using an accurate mass and time tag approach. Mass Spectrom Rev 2006, 25:450-482.
  • [9]Bonetta L: Protein-protein interactions: Interactome under construction. Nature 2010, 468:851-854.
  • [10]Figeys D: Mapping the human protein interactome. Cell Res 2008, 18:716-724.
  • [11]Zhang B, Horvath S: A general framework for weighted gene co-expression network analysis. Stat Appl Genet Mol Biol 2005, 4:17.
  • [12]Langfelder P, Horvath S: WGCNA: an R package for weighted correlation network analysis. BMC Bioinforma 2005, 9:559.
  • [13]Monroe ME, Tolić N, Jaitly N, Shaw JL, Adkins JN, Smith RD: VIPER: an advanced software package to support high-throughput LC-MS peptide identification. Bioinformatics 2007, 23:2021-2023.
  • [14]Stanley JR, Adkins JN, Slysz GW, Monroe ME, Purvine SO, Karpievitch YV, Anderson GA, Smith RD, Dabney AR: A statistical method for assessing peptide identification confidence in accurate mass and time tag proteomics. Anal Chem 2011, 83:6135-6140.
  • [15]Roberts A, Deming D, Paddock CD, Cheng A, Yount B, Vogel L, Herman BD, Sheahan T, Heise M, Genrich GL, Zaki SR, Baric R, Subbarao K: A Mouse-Adapted SARS-Coronavirus Causes Disease and Mortality in BALB/c Mice. PLoS Pathog 2007, 3:e5.
  • [16]Barnard DL: Animal models for the study of influenza pathogenesis and therapy. Antiviral Res 2009, 82:A110-22.
  • [17]Orwoll E, Blank JB, Barrett-Connor E, Cauley J, Cummings S, Ensrud K, Lewis C, Cawthon PM, Marcus R, Marshall LM, McGowan J, Phipps K, Sherman S, Stefanick ML, Stone K: Design and baseline characteristics of the osteoporotic fractures in men (MrOS) study–a large observational study of the determinants of fracture in older men. Contemp Clin Trials 2005, 26:569-585.
  • [18]Cawthon PM, Marshall LM, Michael Y, Dam T-T, Ensrud KE, Barrett-Connor E, Orwoll ES: Osteoporotic Fractures in Men Research Group: Frailty in older men: prevalence, progression, and relationship with mortality. J Am Geriatr Soc 2007, 55:1216-1223.
  • [19]Morley JE, Baumgartner RN, Roubenoff R, Mayer J, Nair KS: Sarcopenia. J Lab Clin Med 2001, 137:231-243.
  • [20]Cox J, Mann M: Quantitative, High-Resolution Proteomics for Data-Driven Systems Biology. Annu Rev Biochem 2011, 80:273-299.
  • [21]Langfelder P, Zhang B, Horvath S: Defining clusters from a hierarchical cluster tree: the Dynamic Tree Cut package for R. Bioinformatics 2008, 24:719-720.
  • [22]Langfelder P, Horvath S: Fast R Functions for Robust Correlations and Hierarchical Clustering. J Stat Softw 2012, 46:1-17.
  • [23]Langfelder P, Luo R, Oldham MC, Horvath S: Is my network module preserved and reproducible? PLoS Comput Biol 2011, 7:e1001057.
  • [24]Langfelder P: Tutorial for the WGCNA package for R. [http://labs.genetics.ucla.edu/horvath/CoexpressionNetwork/Rpackages/WGCNA/Tutorials/index.html webcite]
  • [25]Mason MJ, Fan G, Plath K, Zhou Q, Horvath S: Signed weighted gene co-expression network analysis of transcriptional regulation in murine embryonic stem cells. BMC Genomics 2009, 10:327. BioMed Central Full Text
  • [26]Bankhead IM, Iancu OD, McWeeney SK: Network Guided Disease Classifiers. In Function and Disease, Keystone Symposia on Molecular and Cellular Biology: Bimolecular Interaction and Disease. Québec Canada: Québec; 2010.
  • [27]Iancu OD, Kawane S, Bottomly D, Searles R, Hitzemann R, McWeeney S: Utilizing RNA-Seq data for de novo coexpression network inference. Bioinformatics 2012, 28:1592-1597.
  • [28]Oldham MC, Konopka G, Iwamoto K, Langfelder P, Kato T, Horvath S, Geschwind DH: Functional organization of the transcriptome in human brain. Nat Neurosci 2008, 11:1271-1282.
  • [29]Oldham MC, Horvath S, Geschwind DH: Conservation and evolution of gene coexpression networks in human and chimpanzee brains. Proc Natl Acad Sci 2006, 103:17973-17978.
  • [30]Keshava Prasad TS, Goel R, Kandasamy K, Keerthikumar S, Kumar S, Mathivanan S, Telikicherla D, Raju R, Shafreen B, Venugopal A, Balakrishnan L, Marimuthu A, Banerjee S, Somanathan DS, Sebastian A, Rani S, Ray S, Harrys Kishore CJ, Kanth S, Ahmed M, Kashyap MK, Mohmood R, Ramachandra YL, Krishna V, Rahiman BA, Mohan S, Ranganathan P, Ramabadran S, Chaerkady R, Pandey A: Human Protein Reference Database–2009 update. Nucleic Acids Res 2009, 37:D767-D772.
  • [31]Yellaboina S, Dudekula DB, Ko MS: Prediction of evolutionarily conserved interologs in Mus musculus. BMC Genomics 2008, 9:465. BioMed Central Full Text
  • [32]Kanehisa M: The KEGG resource for deciphering the genome. Nucleic Acids Res 2004, 32:277D-280.
  • [33]Kawashima S, Katayama T, Sato Y, Kanehisa M: KEGG API: A web service using SOAP/WSDL to access the KEGG system. In International Conference on Genome Informatics: December 14-17, 2003, Pacifico Yokohama, Japan. 2003, 14:673-674.
  • [34]Zhang J, Gentleman R: KEGGSOAP: Client-side SOAP access KEGG. [http://www.bioconductor.org/packages/release/bioc/html/KEGGSOAP.html webcite]
  • [35]Benjamini Y, Yekutieli D: The control of the false discovery rate in multiple testing under dependency. Ann Stat 2001, 29:1165-1188.
  • [36]Falcon S, Gentleman R: Using GOstats to test gene lists for GO term association. Bioinformatics 2007, 23:257-258.
  • [37]Ravasz E, Barabási A-L: Hierarchical organization in complex networks. Phys Rev E Stat Nonlin Soft Matter Phys 2003, 67:026112.
  • [38]Albert R: Scale-free networks in cell biology. J Cell Sci 2003, 118:4947-4957.
  文献评价指标  
  下载次数:11次 浏览次数:16次