期刊论文详细信息
Carbon Balance and Management
Setting priorities for land management to mitigate climate change
Ernst-Detlef Schulze1  Thomas Wutzler1  Martina Mund5  Philippe Ciais3  Vincent Gitz2  Yvonne Scholz6  Annette Freibauer4  Hannes Böttcher7 
[1] Max-Planck-Institut für Biogeochemie, Postfach 100164, Jena 07701, Germany;CIRED - CNRS/EHESS, 45 bis avenue de la Belle Gabrielle, Nogent s/Marne 94736, France;Laboratoire des Sciences du Climat et de l'Environnement, Unité Mixte de Recherche CEA-CNRS, CE Orme des Merisiers, Gif sur Yvette, Cedex 91191, France;Johann Heinrich von Thünen-Institut, Institut für Agrarrelevante Klimaforschung, Bundesallee 50, Braunschweig 38116, Germany;Georg-August-Universität Göttingen, Burckhardt-Institut, Waldbau und Waldökologie der gemäßigten Zonen, Büsgenweg 1, Göttingen 37077, Germany;Deutsches Zentrum für Luft- und Raumfahrt, Institut für Technische Thermodynamik, Pfaffenwaldring 38-40, Stuttgart 70569, Germany;International Institute for Applied Systems Analysis, Ecosystem Services and Management Program, Schlossplatz 1, Laxenburg 2361, Austria
关键词: Regional modelling;    Substitution;    Bioenergy;    Agriculture;    Forestry;    Land management;    Carbon balance;    Carbon sequestration;    Carbon stock;   
Others  :  792417
DOI  :  10.1186/1750-0680-7-5
 received in 2011-12-07, accepted in 2012-03-16,  发布年份 2012
PDF
【 摘 要 】

Background

No consensus has been reached how to measure the effectiveness of climate change mitigation in the land-use sector and how to prioritize land use accordingly. We used the long-term cumulative and average sectorial C stocks in biomass, soil and products, C stock changes, the substitution of fossil energy and of energy-intensive products, and net present value (NPV) as evaluation criteria for the effectiveness of a hectare of productive land to mitigate climate change and produce economic returns. We evaluated land management options using real-life data of Thuringia, a region representative for central-western European conditions, and input from life cycle assessment, with a carbon-tracking model. We focused on solid biomass use for energy production.

Results

In forestry, the traditional timber production was most economically viable and most climate-friendly due to an assumed recycling rate of 80% of wood products for bioenergy. Intensification towards "pure bioenergy production" would reduce the average sectorial C stocks and the C substitution and would turn NPV negative. In the forest conservation (non-use) option, the sectorial C stocks increased by 52% against timber production, which was not compensated by foregone wood products and C substitution. Among the cropland options wheat for food with straw use for energy, whole cereals for energy, and short rotation coppice for bioenergy the latter was most climate-friendly. However, specific subsidies or incentives for perennials would be needed to favour this option.

Conclusions

When using the harvested products as materials prior to energy use there is no climate argument to support intensification by switching from sawn-wood timber production towards energy-wood in forestry systems. A legal framework would be needed to ensure that harvested products are first used for raw materials prior to energy use. Only an effective recycling of biomaterials frees land for long-term sustained C sequestration by conservation. Reuse cascades avoid additional emissions from shifting production or intensification.

【 授权许可】

   
2012 Böttcher et al; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20140705031133811.pdf 589KB PDF download
Figure 7. 32KB Image download
Figure 6. 31KB Image download
Figure 5. 33KB Image download
Figure 4. 54KB Image download
Figure 3. 54KB Image download
Figure 2. 62KB Image download
Figure 1. 35KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

Figure 7.

【 参考文献 】
  • [1]Searchinger TD, Hamburg SP, Melillo J, Chameides W, Havlik P, Kammen DM, Likens GE, Lubowski RN, Obersteiner M, Oppenheimer M, Philip Robertson G, Schlesinger WH, David Tilman G: Fixing a critical climate accounting error. Science 2009, 326:527-528.
  • [2]Harmon ME, Ferrell WK, Franklin JF: Effects on Carbon Storage of Conversion of Old-Growth Forests to Young Forests. Science 1990, 247:699-702.
  • [3]Kurz WA, Apps MJ: A 70-year retrospective analysis of carbon fluxes in the Canadian forest sector. Ecol Appl 1999, 9:526-547.
  • [4]Bellamy PH, Loveland PJ, Bradley RI, Lark RM, Kirk GJD: Carbon losses from all soils across England and Wales 1978-2003. Nature 2005, 437:245-248.
  • [5]Körner C: Slow in, Rapid out-Carbon Flux Studies and Kyoto Targets. Science 2003, 300:1242-1243.
  • [6]WBGU: The Accounting of Biological Sinks and Sources Under the Kyoto Protocol - A Step forwards or Backwards for Global Environmental Protection? Wissenschaftlicher Beirat der Bundesregierung Globale Umweltveränderungen (WBGU), Berlin; 1998.
  • [7]WBGU: World in Transition - Towards Sustainable Energy System. London and Sterlin, VA: EARTHSCAN; 2004.
  • [8]Obersteiner M, Böttcher H, Yamagata Y: Terrestrial ecosystem management for climate change mitigation. Curr Opin Environ Sustain 2010, 2:271-276.
  • [9]Rootzén JM, Berndes G, Ravindranath NH, Somashekar HI, Murthy IK, Sudha P, Ostwald M: Carbon sequestration versus bioenergy: A case study from South India exploring the relative land-use efficiency of two options for climate change mitigation. Biomass Bioenerg 2010, 34:116-123.
  • [10]McKechnie J, Colombo S, Chen J, Mabee W, MacLean HL: Forest bioenergy or forest carbon? Assessing trade-offs in greenhouse gas mitigation with wood-based fuels. Environ Sci Technol 2011, 45:789-795.
  • [11]Apps MJ, Kurz WA, Beukema SJ, Bhattia JS: Carbon budget of the Canadian forest product sector. Environ Sci Pol 2001, 2:25-41.
  • [12]OECD: Agriculture and Forestry: Identification of Options for Net Greenhouse Gas Reduction. In Annex I Expert Group on the United Nations Framework Convention on Climate Change Working Paper, 7. OECD, Paris; 1997.
  • [13]Rose SK, Ahammad H, Eickhout B, Fisher B, Kurosawa A, Rao S, Riahi K, van Vuuren DP: Land-based mitigation in climate stabilization. Energy Economics 2012, 34:365-380.
  • [14]Dornburg V, Faaij APC: Cost and CO2-emission reduction of biomass cascading: Methodological aspects and case study of SRF poplar. Clim Chang 2005, 71:373-408.
  • [15]Marland G, Schlamadinger B: Forests for carbon sequestration or fossil fuel substitution - a sensitivity analysis. Biomass Bioenerg 1997, 13:389-397.
  • [16]Tilman D, Hill J, Lehman C: Carbon-Negative Biofuels from Low-Input High-Diversity Grassland Biomass. Science 2006, 314:1598-1600.
  • [17]Eriksson E, Gillespie AR, Gustavsson L, Langvall O, Olsson M, Sathre R, Stendahl J: Integrated carbon analysis of forest management practices and wood substitution. Can J Forest Res 2007, 37:671-681. doi:10.1139/X06-257
  • [18]IPCC: IPCC AR4 Working Group III, Mitigation of Climate Change, Chapter 9 Forestry. [http:/ / www.ipcc-wg3.de/ publications/ assessment-reports/ ar4/ .files-ar4/ Chapter09.pdf] webcite 2007.
  • [19]Gitz V, Hourcade JC, Ciais P: The timing of biological carbon sequestration and carbon abatement in the energy sector under optimal strategies against climate risks. Energ J 2006, 27:113-133.
  • [20]Gielen DJ, de Feber MAPC, Bos AJM, Gerlagh T: Biomass for energy or materials? A Western European systems engineering perspective. Energy Policy 2001, 29(4):291-302.
  • [21]Schneider UA, McCarl BA: Economic potential of biomass based fuels for greenhouse gas emission mitigation. Environ Resource Econ 2003, 24:291-312.
  • [22]Romero C, Ros V, Daz-Balteiro L: Optimal forest rotation age when carbon captured is considered: theory and applications. J Oper Res Soc 1998, 49:121-131.
  • [23]Van Kooten GC, Binkley CS, Delcourt G: Effect of carbon taxes and subsidies on optimal forest rotation age and supply of carbon services. Am J Agr Econ 1995, 77:365-374.
  • [24]Garcia-Quijano JF, Deckmyn G, Moons E, Proost S, Ceulemans R, Muys B: An integrated decision support framework for the prediction and evaluation of efficiency, environmental impact and total social cost of domestic and international forestry projects for greenhouse gas mitigation: Description and case studies. For Ecol Manage 2005, 207:245-262.
  • [25]Backeus S, Wikstrom P, Lamas T: A model for regional analysis of carbon sequestration and timber production. For Ecol Manage 2005, 216:28-40.
  • [26]Bateman IJ, Lovett AA: Estimating and valuing the carbon sequestered in softwood and hardwood trees, timber products and forest soils in Wales. J Environ Manage 2000, 60:301-323.
  • [27]Kirschbaum MUF: To sink or burn? A discussion of the potential contributions of forests to greenhouse gas balances through storing carbon or providing biofuels. Biomass Bioenerg 2003, 24:297-310.
  • [28]Sims REH, Hastings A, Schlamadinger B, Taylor G, Smith P: Energy crops: current status and future prospects. Glob Chang Biol 2006, 12:2054-2076. doi:10.1111/j.1365-2486.2006.01163.x
  • [29]Rokityanskiy D, Benitez PC, Kraxner F, McCallum I, Obersteiner M, Rametsteiner E, Yamagata Y: Geographically explicit global modeling of land-use change, carbon sequestration, and biomass supply. Technol Forecast Soc Change 2007, 74:1057-1082.
  • [30]Gustavsson L, Madlener R, Hoen HF, Jungmeier G, Karjalainen T, Klöhn S, Mahapatra K, Pohjola J, Solberg B, Spelter H: The role of wood material for greenhouse gas mitigation. Mitig Adapt Strat Glob Chang 2006, 11:1097-1127.
  • [31]Sohngen B, Brown S: The influence of conversion of forest types on carbon sequestration and other ecosystem services in the South Central United States. Ecol Econ 2006, 57:698-708.
  • [32]Brandão M, Milà i Canals L, Clift R: Soil organic carbon changes in the cultivation of energy crops: Implications for GHG balances and soil quality for use in LCA. Biomass Bioenerg 2011, 35:2323-2336.
  • [33]Farrell AE, Plevin RJ, Turner BT, Jones AD, O'Hare M, Kammen DM: Ethanol can contribute to energy and environmental goals. Science 2006, 311:506-508.
  • [34]UBA: German Greenhouse Gas Inventory 1990-2004. National Inventory Report 2006. Submission under the United Nations Framework Convention on Climate Change. Federal Environment Agency, Dessau 2006 2006.
  • [35]Smith P, Powlson DS, Glendining MJ, Smith JU: Potential for carbon sequestration in European soils: preliminary estimates for five scenarios using results from long-term experiments. Glob Chang Biol 1997, 3:67-79.
  • [36]Böttcher H, Freibauer A, Obersteiner M, Schulze ED: Uncertainty analysis of climate change mitigation options in the forestry sector using a generic carbon budget model. Ecol Model 2008, 213:45-62.
  • [37]Wirth C, Schulze E-D, Schwalbe G, Tomczyk S, Weber G, Weller E: Dynamik der Kohlenstoffvorräte in den Wäldern Thüringens. Abschlussbericht zur 1. Phase des BMBF-Projektes "Modelluntersuchung zur Umsetzung des Kyoto-Protokolls. Jena: Max Planck Institute for Biogeochemistry; 2003.
  • [38]OECD-FAO: Agricultural Outlook 2007-2016. 2007.
  • [39]Mayer AL, Kauppi PE, Angelstam PK, Zhang Y, Tikka PM: Importing timber, exporting ecological impact. Science 2005, 308:359-360.
  • [40]Huston MA, Marland G: Carbon management and biodiversity. J Environ Manage 2003, 67:77-86.
  • [41]West TO, Marland G: Net carbon flux from agriculture: Carbon emissions, carbon sequestration, crop yield, and land-use change. Biogeochemistry 2003, 63:73-83.
  • [42]Freibauer AE, Mathijs E, Brunori G, Damianova Z, Faroult E, Girona i Gomis J, O'Brien L, Treyer S: The 3rd SCAR Foresight Exercise "Sustainable food consumption and production in a resource-constrained world". European Commission - Standing Committee on Agricultural Research (SCAR) 2011.
  • [43]Liski J, Palosuo T, Peltoniemi M, Sievanen R: Carbon and decomposition model Yasso for forest soils. Ecol Model 2005, 189:168-182.
  • [44]Mund MI, Profft I, Wutzler T, Schulze E-D, Weber G, Weller E: Vorbereitung für eine laufende Fortschreibung der Kohlenstoffvorräte in den Wäldern Thüringens. Abschlussbericht zur 2. Phase des BMBF-Projektes "Modelluntersuchungen zur Umsetzung des Kyoto-Protokolls" Förderkennzeichen 01LK9901. Vorbereitung für eine laufende Fortschreibung der Kohlenstoffvorräte in den Wäldern Thüringens. Abschlussbericht zur 2. Phase des BMBF-Projektes "Modelluntersuchungen zur Umsetzung des Kyoto-Protokolls" Förderkennzeichen 01LK9901 2006, 128.
  • [45]Mund MI, Profft I, Wutzler T, Schulze E-D, Weber G-E, Weller E: Vorbereitungen für eine laufende Fortschreibung der Kohlenstoffvorräte in den Wäldern Thüringens. Abschlussbericht zur 2. Phase des BMBF-Projektes "Modelluntersuchungen zur Umsetzung des Kyoto-Protokolls". Thüringer Landesanstalt für Wald, Jagd und Fischerei, Gotha and Max-Planck-Institut für Biogeochemie, Jena. Thüringen Forst, Gotha, Jena and Gotha 2006.
  • [46]Wenk G, Römisch , Gerold D: DDR-Fichtenertragstafel. In Ertragstafelauszüge. Edited by A Nicke. Fachhochschule für Forstwirtschaft in Schwarzburg; 1985.
  • [47]Dittmar O, Knapp , Lembcke G: Buchenertragstafeln. In Ertragstafelauszüge. Edited by A Nicke. Fachhochschule für Forstwirtschaft in Schwarzburg; 1983.
  • [48]Mund M: Carbon pools of European beech forests (Fagus sylvatica) under different silvicultural management. In Berichte des Forschungszentrums Waldökosysteme, Reihe A, Bd. 189. Universität Göttingen; 2004:256.
  • [49]Becher S: Biogene Festbrennstoffe als Substitut für fossile Brennstoffe - Energie-und Emissionsbilanzen. Band 50, Universität Stuttgart; 1998.
  • [50]Jungmeier G, Spitzer J: Greenhouse gas emissions of bioenergy from agriculture compared to fossil energy for heat and electricity supply. Nutr Cycl Agroecosyst 2001, 30:267-273. doi:10.1023/A:1012651614688
  • [51]Kaltschmitt M: Grundlagen der Festbrennstoffnutzung - Begriffsdefinitionen. In Energie aus Biomasse - Grundlagen, Techniken und Verfahren. Edited by Kaltschmitt M, Hartmann H. Berlin: Springer; 2001:770.
  • [52]LPP: Der deutsche Wald - Holz als Rohstoff. In Der Bürger im Staat 1/2000 Edited by L. f. p. B. Baden-Württemberg. 2000.
  • [53]TMWTA: Thüringer Energiedaten 2005. [http:/ / www.thueringen.de/ imperia/ md/ content/ tmwta/ publikationen/ energie/ energiedaten_2005.pdf] webciteThüringer Ministerium für Wirtschaft, Arbeit und Infrastruktur
  • [54]Petersen AK, Solberg B: Environmental and economic impacts of substitution between wood products and alternative materials: a review of micro-level analyses from Norway and Sweden. Forest Pol Econ 2005, 7:249-259.
  • [55]TMLNU: Förderung von Erstaufforstungen und Förderung von forstwirtschaftlichen Maßnahmen nach dem Gesetz über die Gemeinschaftsaufgabe Verbesserung der Agrarstruktur und des Küstenschutzes. [http:/ / www.thueringen.de/ de/ tmlfun/ aktuell/ foerderung/ eu/ strukturfonds/ eagfla/ eagfla1/ content.html] webciteThüringer Ministerium für Landwirtschaft, Naturschutz und Umwelt
  • [56]TMLNU: Förderfibel 2004/2005. Ratgeber für Kommunen, Unternehmen, Verbände und Verwaltung. Thüringer Ministerium für Landwirtschaft, Naturschutz und Umwelt 2004. 124
  • [57]BMELV: Die EU-Agrarreform - Umsetzung in Deutschland. 2006.
  • [58]Muukkonen P, Lehtonen A: Needle and branch biomass turnover rates of Norway spruce (Picea abies). Can J Forest Res 2004, 34:2517-2527.
  文献评价指标  
  下载次数:174次 浏览次数:36次