期刊论文详细信息
Clinical Proteomics
Distinct transthyretin oxidation isoform profile in spinal fluid from patients with Alzheimer’s disease and mild cognitive impairment
Niels HH Heegaard3  Steen G Hasselbalch2  Anja H Simonsen2  Justyna MC Bahl1  Keld Poulsen1 
[1] Department of Clinical Biochemistry, Immunology and Genetics, Statens Serum Institut, Artillerivej 5, DK-2300 Copenhagen S, Denmark;Memory Disorders Research Unit, Department of Neurology, Copenhagen University Hospital, Rigshospitalet, Blegdamsvej 9, DK-2100 Copenhagen Ø, Denmark;Department of Clinical Biochemistry and Pharmacology, Odense University Hospital, University of Southern Denmark, Sdr. Boulevard 29, DK-5000 Odense C, Denmark
关键词: Normal pressure hydrocephalus;    Cerebrospinal fluid;    Transthyretin;    Alzheimer’s disease;    Oxidation;    Isoform profiling;    Mass spectrometry;    Immunoaffinity;   
Others  :  802826
DOI  :  10.1186/1559-0275-11-12
 received in 2013-08-26, accepted in 2014-02-10,  发布年份 2014
PDF
【 摘 要 】

Background

Transthyretin (TTR), an abundant protein in cerebrospinal fluid (CSF), contains a free, oxidation-prone cysteine residue that gives rise to TTR isoforms. These isoforms may reflect conditions in vivo. Since increased oxidative stress has been linked to neurodegenerative disorders such as Alzheimer’s disease (AD) it is of interest to characterize CSF-TTR isoform distribution in AD patients and controls. Here, TTR isoforms are profiled directly from CSF by an optimized immunoaffinity-mass spectrometry method in 76 samples from patients with AD (n = 37), mild cognitive impairment (MCI, n = 17)), and normal pressure hydrocephalus (NPH, n = 15), as well as healthy controls (HC, n = 7). Fractions of three specific oxidative modifications (S-cysteinylation, S-cysteinylglycinylation, and S-glutathionylation) were quantitated relative to the total TTR protein. Results were correlated with diagnostic information and with levels of CSF AD biomarkers tau, phosphorylated tau, and amyloid β1-42 peptide.

Results

Preliminary data highlighted the high risk of artifactual TTR modification due to ex vivo oxidation and thus the samples for this study were all collected using strict and uniform guidelines. The results show that TTR is significantly more modified on Cys(10) in the AD and MCI groups than in controls (NPH and HC) (p ≤ 0.0012). Furthermore, the NPH group, while having normal TTR isoform distribution, had significantly decreased amyloid β peptide but normal tau values. No obvious correlations between levels of routine CSF biomarkers for AD and the degree of TTR modification were found.

Conclusions

AD and MCI patients display a significantly higher fraction of oxidatively modified TTR in CSF than the control groups of NPH patients and HC. Quantitation of CSF-TTR isoforms thus may provide diagnostic information in patients with dementia symptoms but this should be explored in larger studies including prospective studies of MCI patients. The development of methods for simple, robust, and reproducible inhibition of in vitro oxidation during CSF sampling and sample handling is highly warranted. In addition to the diagnostic information the possibility of using TTR as a CSF oxymeter is of potential value in studies monitoring disease activity and developing new drugs for neurodegenerative diseases.

【 授权许可】

   
2014 Poulsen et al.; licensee BioMed Central Ltd.

【 预 览 】
附件列表
Files Size Format View
20140708031713369.pdf 890KB PDF download
Figure 5. 32KB Image download
Figure 4. 53KB Image download
Figure 3. 54KB Image download
Figure 2. 36KB Image download
Figure 1. 46KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

【 参考文献 】
  • [1]Brookmeyer R, Johnson E, Ziegler-Graham K, Arrighi HM: Forecasting the global burden of Alzheimer’s disease. Alzheimers Dement 2007, 3(3):186-191.
  • [2]Blennow K, de Leon MJ, Zetterberg H: Alzheimer’s disease. Lancet 2006, 368(9533):387-403.
  • [3]Blennow K, Hampel H, Weiner M, Zetterberg H: Cerebrospinal fluid and plasma biomarkers in Alzheimer disease. Nat Rev Neurol 2010, 6(3):131-144.
  • [4]Dubois B, Feldman HH, Jacova C, DeKosky ST, Barberger-Gateau P, Cummings J, Delacourte A, Galasko D, Gauthier S, Jicha G, Meguro K, O’Brien J, Pasquier F, Robert P, Rossor M, Salloway S, Stern Y, Visser PJ, Scheltens P: Research criteria for the diagnosis of Alzheimer’s disease: revising the NINCDS-ADRDA criteria. Lancet Neurol 2007, 6(8):734-746.
  • [5]Dubois B, Picard G, Sarazin M: Early detection of Alzheimer’s disease: new diagnostic criteria. Dialogues Clin Neurosci 2009, 11(2):135-139.
  • [6]Hensley K, Butterfield DA, Hall N, Cole P, Subramaniam R, Mark R, Mattson MO, Markesbery WR, Harris ME, Aksenov M, Aksenova M, Wu JF, Carney JM: Reactive oxygen species as causal agents in the neurotoxicity of the Alzheimer’s disease-associated amyloid beta peptide. Ann N Y Acad Sci 1996, 786:120-134.
  • [7]Sayre LM, Perry G, Smith MA: Oxidative stress and neurotoxicity. Chem Res Toxicol 2008, 21(1):172-188.
  • [8]Pettersson T, Carlstrom A, Jornvall H: Different types of microheterogeneity of human thyroxine-binding prealbumin. Can J Neurol Sci 1987, 26(14):4572-4583.
  • [9]Biroccio A, Del Boccio P, Panella M, Bernardini S, Di Ilio C, Gambi D, Stanzione P, Sacchetta P, Bernardi G, Martorana A, Federici G, Stefani A, Urbani A: Differential post-translational modifications of transthyretin in Alzheimer’s disease: a study of the cerebral spinal fluid. Proteomics 2006, 6(7):2305-2313.
  • [10]Butterfield DA, Perluigi M, Sultana R: Oxidative stress in Alzheimer’s disease brain: new insights from redox proteomics. Eur J Pharmacol 2006, 545(1):39-50.
  • [11]Sultana R, Perluigi M, Butterfield DA: Oxidatively modified proteins in Alzheimer’s disease (AD), mild cognitive impairment and animal models of AD: role of Abeta in pathogenesis. Acta Neuropathol 2009, 118(1):131-150.
  • [12]Sultana R, Boyd-Kimball D, Poon HF, Cai J, Pierce WM, Klein JB, Merchant M, Markesbery WR, Butterfield DA: Redox proteomics identification of oxidized proteins in Alzheimer’s disease hippocampus and cerebellum: an approach to understand pathological and biochemical alterations in AD. Neurobiol Aging 2006, 27(11):1564-1576.
  • [13]Davidsson P, Westman-Brinkmalm A, Nilsson CL, Lindbjer M, Paulson L, Andreasen N, Sjogren M, Blennow K: Proteome analysis of cerebrospinal fluid proteins in Alzheimer patients. Neuroreport 2002, 13(5):611-615.
  • [14]Hansson SF, Andreasson U, Wall M, Skoog I, Andreasen N, Wallin A, Zetterberg H, Blennow K: Reduced levels of amyloid-beta-binding proteins in cerebrospinal fluid from Alzheimer’s disease patients. J Alzheimers Dis 2009, 16(2):389-397.
  • [15]Riisoen H: Reduced prealbumin (transthyretin) in CSF of severely demented patients with Alzheimer’s disease. Acta Neurol Scand 1988, 78(6):455-459.
  • [16]Merched A, Serot JM, Visvikis S, Aguillon D, Faure G, Siest G: Apolipoprotein E, transthyretin and actin in the CSF of Alzheimer’s patients: relation with the senile plaques and cytoskeleton biochemistry. FEBS Lett 1998, 425(2):225-228.
  • [17]Schultz K, Nilsson K, Nielsen JE, Lindquist SG, Hjermind LE, Andersen BB, Wallin A, Nilsson C, Petersen A: Transthyretin as a potential CSF biomarker for Alzheimer’s disease and dementia with Lewy bodies: effects of treatment with cholinesterase inhibitors. Eur J Neurol 2010, 17:456-460.
  • [18]Serot JM, Christmann D, Dubost T, Couturier M: Cerebrospinal fluid transthyretin: aging and late onset Alzheimer’s disease. J Neurol Neurosurg Psychiatry 1997, 63(4):506-508.
  • [19]Heegaard NH, Hansen MZ, Sen JW, Christiansen M, Westermark P: Immunoaffinity chromatographic and immunoprecipitation methods combined with mass spectrometry for characterization of circulating transthyretin. J Sep Sci 2006, 29(3):371-377.
  • [20]Poulsen K, Bahl JM, Tanassi JT, Simonsen AH, Heegaard NH: Characterization and stability of transthyretin isoforms in cerebrospinal fluid examined by immunoprecipitation and high-resolution mass spectrometry of intact protein. Methods 2012, 56(2):284-292.
  • [21]Osorio RS, Berti V, Mosconi L, Li Y, Glodzik L, De Santi S, de Leon MJ: Evaluation of early dementia (mild cognitive impairment). PET Clin 2010, 5(1):15-31.
  • [22]Andreasen N, Blennow K: CSF biomarkers for mild cognitive impairment and early Alzheimer’s disease. Clin Neurol Neurosurg 2005, 107(3):165-173.
  • [23]Hogh P, Waldemar G, Knudsen GM, Bruhn P, Mortensen H, Wildschiodtz G, Bech RA, Juhler M, Paulson OB: A multidisciplinary memory clinic in a neurological setting: diagnostic evaluation of 400 consecutive patients. Eur J Neurol 1999, 6(3):279-288.
  • [24]Thynne K: Normal pressure hydrocephalus. J Neurosci Nurs 2007, 39(1):27-32.
  • [25]Folstein MF, Folstein SE, Fanjiang G: MMSE Mini-Mental State Examination. Clinical Guide. Psychological Assessment Resources, Inc; 2001.
  • [26]Stokholm J, Vogel A, Johannsen P, Waldemar G: Validation of the Danish Addenbrooke’s cognitive examination as a screening test in a memory clinic. Dement Geriatr Cogn Disord 2009, 27(4):361-365.
  • [27]McKhann GM, Knopman DS, Chertkow H, Hyman BT, Jack CR Jr, Kawas CH, Klunk WE, Koroshetz WJ, Manly JJ, Mayeux R, Mohs RC, Morris JC, Rossor MN, Scheltens P, Carrillo MC, Thies B, Weintraub S, Phelps CH: The diagnosis of dementia due to Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement 2011, 7(3):263-269.
  • [28]Petersen RC, Smith GE, Waring SC, Ivnik RJ, Tangalos EG, Kokmen E: Mild cognitive impairment: clinical characterization and outcome. Arch Neurol 1999, 56(3):303-308.
  • [29]Relkin N, Marmarou A, Klinge P, Bergsneider M, Black PM: Diagnosing idiopathic normal-pressure hydrocephalus. Neurosurgery 2005, 57(3 Suppl):S4-S16.
  • [30]Vanderstichele H, De Vreese K, Blennow K, Andreasen N, Sindic C, Ivanoiu A, Hampel H, Burger K, Parnetti L, Lanari A, Padovani A, DiLuca M, Blaser M, Olsson AO, Pottel H, Hulstaert F, Vanmechelen E: Analytical performance and clinical utility of the INNOTEST PHOSPHO-TAU181P assay for discrimination between Alzheimer’s disease and dementia with Lewy bodies. Clin Chem Lab Med 2006, 44(12):1472-1480.
  • [31]Hulstaert F, Blennow K, Ivanoiu A, Schoonderwaldt HC, Riemenschneider M, De Deyn PP, Bancher C, Cras P, Wiltfang J, Mehta PD, Iqbal K, Pottel H, Vanmechelen E, Vanderstichele H: Improved discrimination of AD patients using beta-amyloid(1–42) and tau levels in CSF. Neurology 1999, 52(8):1555-1562.
  • [32]Leduc RD, Kelleher NL: Using ProSight PTM and related tools for targeted protein identification and characterization with high mass accuracy tandem MS data. Curr Protoc Bioinformatics 2007, Chapter 13:Unit 13.6.
  • [33]Boys BL, Kuprowski MC, Noel JJ, Konermann L: Protein oxidative modifications during electrospray ionization: solution phase electrochemistry or corona discharge-induced radical attack? Anal Chem 2009, 81(10):4027-4034.
  • [34]Chen M, Cook KD: Oxidation artifacts in the electrospray mass spectrometry of Abeta Peptide. Anal Chem 2007, 79(5):2031-2036.
  • [35]Schmidt A, Karas M, Dulcks T: Effect of different solution flow rates on analyte ion signals in nano-ESI MS, or: when does ESI turn into nano-ESI? J Am Soc Mass Spectrom 2003, 14(5):492-500.
  • [36]Gloeckner SF, Meyne F, Wagner F, Heinemann U, Krasnianski A, Meissner B, Zerr I: Quantitative analysis of transthyretin, tau and amyloid-beta in patients with dementia. J Alzheimers Dis 2008, 14(1):17-25.
  • [37]Ray B, Reyes PF, Lahiri DK: Biochemical studies in Normal Pressure Hydrocephalus (NPH) patients: change in CSF levels of amyloid precursor protein (APP), amyloid-beta (Abeta) peptide and phospho-tau. J Psychiatr Res 2011, 45(4):539-547.
  • [38]Kapaki EN, Paraskevas GP, Tzerakis NG, Sfagos C, Seretis A, Kararizou E, Vassilopoulos D: Cerebrospinal fluid tau, phospho-tau181 and beta-amyloid1-42 in idiopathic normal pressure hydrocephalus: a discrimination from Alzheimer’s disease. Eur J Neurol 2007, 14(2):168-173.
  • [39]Tarnaris A, Toma AK, Pullen E, Chapman MD, Petzold A, Cipolotti L, Kitchen ND, Keir G, Lemieux L, Watkins LD: Cognitive, biochemical, and imaging profile of patients suffering from idiopathic normal pressure hydrocephalus. Alzheimers Dement 2011, 7(5):501-508.
  • [40]Agren-Wilsson A, Lekman A, Sjoberg W, Rosengren L, Blennow K, Bergenheim AT, Malm J: CSF biomarkers in the evaluation of idiopathic normal pressure hydrocephalus. Acta Neurol Scand 2007, 116(5):333-339.
  文献评价指标  
  下载次数:29次 浏览次数:27次