期刊论文详细信息
Cardiovascular Diabetology
The interleukin-1 receptor antagonist anakinra improves endothelial dysfunction in streptozotocin-induced diabetic rats
Carlos F Sánchez-Ferrer3  Concepción Peiró3  Laura Villalobos3  Tania Romacho2  Erika Palacios1  Susana Vallejo3 
[1] Present address: Departamento de Ciencias de la Salud, Edificio CN208, Oficina O, Universidad de las Américas, Puebla, México;Present address: Paul Langerhans-Group, Integrative Physiology, German Diabetes Center, Auf’m Hennekamp 65, Düsseldorf, 40225, Germany;Departamento de Farmacología, Facultad de Medicina, Universidad Autónoma de Madrid, Calle Arzobispo Morcillo 4, Madrid, 29029, Spain
关键词: Vascular inflammation;    Interleukin-1β;    Anakinra;    Nuclear factor-κB;    NADPH oxidase;    Endothelial dysfunction;    Diabetes mellitus;   
Others  :  1118927
DOI  :  10.1186/s12933-014-0158-z
 received in 2014-05-28, accepted in 2014-11-21,  发布年份 2014
PDF
【 摘 要 】

Background

Endothelial dysfunction is a crucial early phenomenon in vascular diseases linked to diabetes mellitus and associated to enhanced oxidative stress. There is increasing evidence about the role for pro-inflammatory cytokines, like interleukin-1β (IL-1β), in developing diabetic vasculopathy. We aimed to determine the possible involvement of this cytokine in the development of diabetic endothelial dysfunction, analysing whether anakinra, an antagonist of IL-1 receptors, could reduce this endothelial alteration by interfering with pro-oxidant and pro-inflammatory pathways into the vascular wall.

Results

In control and two weeks evolution streptozotocin-induced diabetic rats, either untreated or receiving anakinra, vascular reactivity and NADPH oxidase activity were measured, respectively, in isolated rings and homogenates from mesenteric microvessels, while nuclear factor (NF)-κB activation was determined in aortas. Plasma levels of IL-1β and tumor necrosis factor (TNF)-α were measured by ELISA. In isolated mesenteric microvessels from control rats, two hours incubation with IL-1β (1 to 10 ng/mL) produced a concentration-dependent impairment of endothelium-dependent relaxations, which were mediated by enhanced NADPH oxidase activity via IL-1 receptors. In diabetic rats treated with anakinra (100 or 160 mg/Kg/day for 3 or 7 days before sacrifice) a partial improvement of diabetic endothelial dysfunction occurred, together with a reduction of vascular NADPH oxidase and NF-κB activation. Endothelial dysfunction in diabetic animals was also associated to higher activities of the pro-inflammatory enzymes cyclooxygenase (COX) and the inducible isoform of nitric oxide synthase (iNOS), which were markedly reduced after anakinra treatment. Circulating IL-1β and TNF-α levels did not change in diabetic rats, but they were lowered by anakinra treatment.

Conclusions

In this short-term model of type 1 diabetes, endothelial dysfunction is associated to an IL-1 receptor-mediated activation of vascular NADPH oxidase and NF-κB, as well as to vascular inflammation. Moreover, endothelial dysfunction, vascular oxidative stress and inflammation were reduced after anakinra treatment. Whether this mechanism can be extrapolated to a chronic situation or whether it may apply to diabetic patients remain to be established. However, it may provide new insights to further investigate the therapeutic use of IL-1 receptor antagonists to obtain vascular benefits in patients with diabetes mellitus and/or atherosclerosis.

【 授权许可】

   
2014 Vallejo et al.; licensee BioMed Central.

【 预 览 】
附件列表
Files Size Format View
20150208031342372.pdf 2612KB PDF download
Figure 7. 57KB Image download
Figure 6. 49KB Image download
Figure 5. 54KB Image download
Figure 4. 39KB Image download
Figure 3. 55KB Image download
Figure 2. 40KB Image download
Figure 1. 63KB Image download
【 图 表 】

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

Figure 7.

【 参考文献 】
  • [1]Fortes ZB, Garcia Leme J, Scivoletto R: Influence of diabetes on the reactivity of mesenteric microvessels to histamine, bradykinin and acetylcholine. Br J Pharmacol 1998, 78:39-48.
  • [2]Durante W, Sen AK, Sunahara FA: Impairment of endothelium-dependent relaxation in aortae from spontaneously diabetic rats. Br J Pharmacol 1988, 94:463-468.
  • [3]Calver A, Collier J, Vallance P: Inhibition and stimulation of nitric oxide synthesis in the human forearm arterial bed of patients with insulin-dependent diabetes. J Clin Invest 1992, 90:2548-2554.
  • [4]Johnstone MT, Creager SJ, Scales KM, Cusco JA, Lee BK, Creager MA: Impaired endothelium-dependent vasodilation in patients with insulin-dependent diabetes mellitus. Circulation 1993, 88:2510-2516.
  • [5]Angulo J, Rodríguez-Mañas L, Peiró C, Neira M, Marín J, Sánchez-Ferrer CF: Impairment of nitric oxide-mediated relaxations in anaesthetized autoperfused streptozotocin-induced diabetic rats. Naunyn Schmiedebergs Arch Pharmacol 1998, 358:529-537.
  • [6]Rodríguez-Mañas L, Angulo J, Peiró C, Llergo JL, Sánchez-Ferrer A, López-Dóriga P, Sánchez-Ferrer CF: Endothelial dysfunction and metabolic control in streptozotocin-induced diabetic rats. Br J Pharmacol 1998, 123:1495-1502.
  • [7]Rodríguez-Mañas L, Angulo J, Vallejo S, Peiró C, Sánchez-Ferrer A, Cercas E, López-Dóriga P, Sánchez-Ferrer CF: Early and intermediate Amadori glycosylation adducts, oxidative stress, and endothelial dysfunction in the streptozotocin-induced diabetic rats vasculature. Diabetologia 2003, 46:556-566.
  • [8]Rodríguez-Mañas L, López-Dóriga P, Petidier R, Neira M, Solís J, Pavón I, Peiró C, Sánchez-Ferrer CF: Effect of glycaemic control on the vascular nitric oxide system in patients with type 1 diabetes. J Hypertens 2003, 21:1137-1143.
  • [9]Zguira MS, Vincent S, Le Douairon LS, Malarde L, Tabka Z, Saïag B: Intense exercise training is not effective to restore the endothelial NO-dependent relaxation in STZ-diabetic rat aorta. Cardiovasc Diabetol 2013, 12:32. BioMed Central Full Text
  • [10]Sowers JR: Diabetes mellitus and vascular disease. Hypertension 2013, 61:943-947.
  • [11]Raines EW, Ferri N: Thematic review series: the immune system and atherogenesis. cytokines affecting endothelial and smooth muscle cells in vascular disease. J Lipid Res 2002, 46:1081-1092.
  • [12]Sprague AH, Khalil RA: Inflammatory cytokines in vascular dysfunction and vascular disease. Biochem Pharmacol 2009, 78:539-552.
  • [13]Goldberg RB: Cytokine and cytokine-like inflammation markers, endothelial dysfunction, and imbalanced coagulation in development of diabetes and its complications. J Clin Endocrinol Metab 2009, 94:3171-3182.
  • [14]Frostegård J: Immune mechanisms in atherosclerosis, especially in diabetes type 2. Front Endocrinol (Lausanne) 2013, 4:162.
  • [15]Dinarello CA, Donath MY, Mandrup-Poulsen T: Role of IL-1beta in type 2 diabetes. Curr Opin Endocrinol Diabetes Obes 2010, 17:314-321.
  • [16]Sumpter KM, Adhikari S, Grishman EK, White PC: Preliminary studies related to anti-interleukin-1β therapy in children with newly diagnosed type 1 diabetes. Pediatr Diabetes 2011, 12:656-667.
  • [17]Kowluru RA, Odenbach S: Role of interleukin-1beta in the pathogenesis of diabetic retinopathy. Br J Ophthalmol 2004, 88:1343-1347.
  • [18]Liu Y, Biarnés Costa M, Gerhardinger C: IL-1β is upregulated in the diabetic retina and retinal vessels: cell-specific effect of high glucose and IL-1β autostimulation. PLoS One 2012, 7:e36949.
  • [19]Larsen CM, Faulenbach M, Vaag A, Vølund A, Ehses JA, Seifert B, Mandrup-Poulsen T, Donath MY: Interleukin-1-receptor antagonist in type 2 diabetes mellitus. N Engl J Med 2007, 356:1517-1526.
  • [20]Maedler K, Dharmadhikari G, Schumann DM, Størling J: Interleukin-1 beta targeted therapy for type 2 diabetes. Expert Opin Biol Ther 2009, 9:1177-1188.
  • [21]Maedler K, Dharmadhikari G, Schumann DM, Størling J: Interleukin-targeted therapy for metabolic syndrome and type 2 diabetes. Handb Exp Pharmacol 2011, 203:257-278.
  • [22]Wimalasundera R, Fexby S, Regan L, Thom SA, Hughes AD: Effect of tumour necrosis factor-alpha and interleukin 1beta on endothelium-dependent relaxation in rat mesenteric resistance arteries in vitro. Br J Pharmacol 2003, 138:1285-1294.
  • [23]Vila E, Salaices M: Cytokines and vascular reactivity in resistance arteries. Am J Physiol Heart Circ Physiol 2005, 288:H1016-H1021.
  • [24]Jiménez-Altayó F, Briones AM, Giraldo J, Planas AM, Salaices M, Vila E: Increased superoxide anion production by interleukin-1beta impairs nitric oxide-mediated relaxation in resistance arteries. J Pharmacol Exp Ther 2006, 316:42-52.
  • [25]Donath MY, Mandrup-Poulsen T: The use of interleukin-1-receptor antagonists in the treatment of diabetes mellitus. Nat Clin Pract Endocrinol Metab 2008, 4:240-241.
  • [26]Vallejo S, Romacho T, Angulo J, Villalobos LA, Cercas E, Leivas A, Bermejo E, Carraro R, Sánchez-Ferrer CF, Peiró C: Visfatin impairs endothelium-dependent relaxation in rat and human mesenteric microvessels through nicotinamide phosphoribosyltransferase activity. PLoS One 2011, 6:e27299.
  • [27]Hernández-Presa MA, Gómez-Guerrero C, Egido J: In situ non-radioactive detection of nuclear factors in paraffin sections by Southwestern histochemistry. Kidney Int 1999, 55:209-214.
  • [28]López-Franco O, Hernández-Vargas P, Ortiz-Muñoz G, Sanjuán G, Suzuki Y, Ortega L, Egido J, Gómez-Guerrero C: Parthenolide modulates the NF-κB mediated inflammatory responses in experimental atherosclerosis. Arterioscler Thromb Vasc Biol 2006, 26:1864-1870.
  • [29]Hingorani AD, Cross J, Kharbanda RK, Mullen MJ, Bhagat K, Taylor M, Donald AE, Palacios M, Griffin GE, Deanfield JE, MacAllister RJ, Vallance P: Acute systemic inflammation impairs endothelium-dependent dilatation in humans. Circulation 2000, 102:994-999.
  • [30]Kharbanda RK, Walton B, Allen M, Klein N, Hingorani AD, MacAllister RJ, Vallance P: Prevention of inflammation-induced endothelial dysfunction: a novel vasculo-protective action of aspirin. Circulation 2002, 105:2600-2604.
  • [31]Greenberg S, Xie J, Wang Y, Cai B, Kolls J, Nelson S, Hyman A, Summer WR, Lippton H: Tumor necrosis factor-alpha inhibits endothelium-dependent relaxation. J Appl Physiol 1993, 74:2394-2403.
  • [32]Nakamura M, Yoshida H, Arakawa N, Saitoh S, Satoh M, Hiramori K: Effects of tumor necrosis factor-alpha on basal and stimulated endothelium-dependent vasomotion in human resistance vessel. J Cardiovasc Pharmacol 2000, 36:487-492.
  • [33]Rask-Madsen C, Domínguez H, Ihlemann N, Hermann T, Køber L, Torp-Pedersen C: Tumor necrosis factor-alpha inhibits insulin’s stimulating effect on glucose uptake and endothelium-dependent vasodilation in humans. Circulation 2003, 108:1815-1821.
  • [34]Picchi A, Gao X, Belmadani S, Potter BJ, Focardi M, Chilian WM, Zhang C: Tumor necrosis factor-alpha induces endothelial dysfunction in the prediabetic metabolic syndrome. Circ Res 2006, 99:69-77.
  • [35]Gao X, Belmadani S, Picchi A, Xu X, Potter BJ, Tewari-Singh N, Capobianco S, Chilian WM, Zhang C: Tumor necrosis factor-alpha induces endothelial dysfunction in Lepr(db) mice. Circulation 2007, 115:245-254.
  • [36]Maedler K, Sergeev P, Ris F, Oberholzer J, Joller-Jemelka HI, Spinas GA, Kaiser N, Halban PA, Donath MY: Glucose-induced beta cell production of IL-1beta contributes to glucotoxicity in human pancreatic islets. J Clin Invest 2002, 110:851-860.
  • [37]Maedler K, Sergeev P, Ehses JA, Mathe Z, Bosco D, Berney T, Dayer JM, Reinecke M, Halban PA, Donath MY: Leptin modulates beta cell expression of IL-1 receptor antagonist and release of IL-1beta in human islets. Proc Natl Acad Sci U S A 2004, 101:8138-8143.
  • [38]Orlinska U, Newton RC: Role of glucose in interleukin-1 beta production by lipopolysaccharide-activated human monocytes. J Cell Physiol 1993, 157:201-208.
  • [39]Shashkin PN, Jain N, Miller YI, Rissing BA, Huo Y, Keller SR, Vandenhoff GE, Nadler JL, McIntyre TM: Insulin and glucose play a role in foam cell formation and function. Cardiovas Diabetol 2006, 5:13. BioMed Central Full Text
  • [40]Dasu MR, Devaraj S, Jialal I: High glucose induces IL-1beta expression in human monocytes: mechanistic insights. Am J Physiol Endocrinol Metab 2007, 293:E337-E346.
  • [41]Asakawa H, Miyagawa J, Hanafusa T, Kuwajima M, Matsuzawa Y: High glucose and hyperosmolarity increase secretion of interleukin-1 beta in cultured human aortic endothelial cells. J Diabetes Complications 1997, 11:176-179.
  • [42]McGillicuddy FC, Harford KA, Reynolds CM, Oliver E, Claessens M, Mills KH, Roche HM: Lack of interleukin-1 receptor I (IL-1RI) protects mice from high-fat diet-induced adipose tissue inflammation coincident with improved glucose homeostasis. Diabetes 2011, 60:1688-1698.
  • [43]Larsen CM, Faulenbach M, Vaag A, Ehses JA, Donath MY, Mandrup-Poulsen T: Sustained effects of interleukin-1 receptor antagonist treatment in type 2 diabetes. Diabetes Care 2009, 32:1663-1668.
  • [44]Ehses JA, Lacraz G, Giroix MH, Schmidlin F, Coulaud J, Kassis N, Irminger JC, Kergoat M, Portha B, Homo-Delarche F, Donath MY: IL-1 antagonism reduces hyperglycemia and tissue inflammation in the type 2 diabetic GK rat. Proc Natl Acad Sci U S A 2009, 106:13998-14003.
  • [45]Lacraz G, Giroix MH, Kassis N, Coulaud J, Galinier A, Noll C, Cornut M, Schmidlin F, Paul JL, Janel N, Irminger JC, Kergoat M, Portha B, Donath MY, Ehses JA, Homo-Delarche F: Islet endothelial activation and oxidative stress gene expression is reduced by IL-1Ra treatment in the type 2 diabetic GK rat. PLoS One 2009, 4:e6963.
  • [46]Sauter NS, Schulthess FT, Galasso R, Castellani LW, Maedler K: The antiinflammatory cytokine interleukin-1 receptor antagonist protects from high-fat diet-induced hyperglycemia. Endocrinology 2008, 149:2208-2218.
  • [47]Owyang AM, Maedler K, Gross L, Yin J, Esposito L, Shu L, Jadhav J, Domsgen E, Bergemann J, Lee S, Kantak S: XOMA 052, an anti-IL-1{beta} monoclonal antibody, improves glucose control and {beta}-cell function in the diet-induced obesity mouse model. Endocrinology 2010, 151:2515-2527.
  • [48]Amin A, Choi SK, Galan M, Kassan M, Partyka M, Kadowitz P, Henrion D, Trebak M, Belmadani S, Matrougui K: Chronic inhibition of endoplasmic reticulum stress and inflammation prevents ischaemia-induced vascular pathology in type II diabetic mice. J Pathol 2012, 227:165-174.
  • [49]Chi H, Messas E, Levine RA, Graves DT, Amar S: Interleukin-1 receptor signaling mediates atherosclerosis associated with bacterial exposure and/or a high-fat diet in a murine apolipoprotein E heterozygote model: pharmacotherapeutic implications. Circulation 2004, 110:1678-1685.
  • [50]Isoda K, Sawada S, Ishigami N, Matsuki T, Miyazaki K, Kusuhara M, Iwakura Y, Ohsuzu F: Lack of interleukin-1 receptor antagonist modulates plaque composition in apolipoprotein E-deficient mice. Arterioscler Thromb Vasc Biol 2004, 24:1068-1073.
  • [51]Merhi-Soussi F, Kwak BR, Magne D, Chadjichristos C, Berti M, Pelli G, James RW, Mach F, Gabay C: Interleukin-1 plays a major role in vascular inflammation and atherosclerosis in male apolipoprotein E-knockout mice. Cardiovasc Res 2005, 66:583-593.
  • [52]Abbate A, Salloum FN, Vecile E, Das A, Hoke NN, Straino S, Biondi-Zoccai GG, Houser JE, Qureshi IZ, Ownby ED, Gustini E, Biasucci LM, Severino A, Capogrossi MC, Vetrovec GW, Crea F, Baldi A, Kukreja RC, Dobrina A: Anakinra, a recombinant human interleukin-1 receptor antagonist, inhibits apoptosis in experimental acute myocardial infarction. Circulation 2008, 117:2670-2683.
  • [53]Abbate A, Van Tassell BW, Biondi-Zoccai G, Kontos MC, Grizzard JD, Spillman DW, Oddi C, Roberts CS, Melchior RD, Mueller GH, Abouzaki NA, Rengel LR, Varma A, Gambill ML, Falcao RA, Voelkel NF, Dinarello CA, Vetrovec GW: Effects of interleukin-1 blockade with anakinra on adverse cardiac remodeling and heart failure after acute myocardial infarction [from the Virginia Commonwealth University-Anakinra Remodeling Trial (2) (VCU-ART2) pilot study]. Am J Cardiol 2003, 111:1394-1400.
  • [54]Van Tassell BW, Arena R, Biondi-Zoccai G, McNair Canada J, Oddi C, Abouzaki NA, Jahangiri A, Falcao RA, Kontos MC, Shah KB, Voelkel NF, Dinarello CA, Abbate A: Effects of Interleukin-1 blockade with anakinra on aerobic exercise capacity in patients with heart failure and preserved ejection fraction (from the D-HART Pilot Study). Am J Cardiol 2014, 113:321-327.
  • [55]Ikonomidis I, Lekakis JP, Nikolaou M, Paraskevaidis I, Andreadou I, Kaplanoglou T, Katsimbri P, Skarantavos G, Soucacos PN, Kremastinos DT: Inhibition of interleukin-1 by anakinra improves vascular and left ventricular function in patients with rheumatoid arthritis. Circulation 2008, 117:2662-2669.
  • [56]Qamar A, Rader DJ: Effect of interleukin 1β inhibition in cardiovascular disease. Curr Opin Lipidol 2012, 23:548-553.
  • [57]Mourmoura E, Vial G, Laillet B, Rigaudière JP, Hininger-Favier I, Dubouchaud H, Morio B, Demaison L: Preserved endothelium-dependent dilatation of the coronary microvasculature at the early phase of diabetes mellitus despite the increased oxidative stress and depressed cardiac mechanical function ex vivo. Cardiovasc Diabetol 2013, 12:49. BioMed Central Full Text
  • [58]López-López JG, Moral-Sanz J, Frazziano G, Gómez-Villalobos MJ, Flores-Hernandez J, Monjaraz E, Cogolludo A, Pérez-Vizcaíno F: Diabetes induces pulmonary artery endothelial dysfunction by NADPH oxidase induction. Am J Physiol Lung Cell Mol Physiol 2008, 295:L727-L732.
  • [59]Olukman M, Orhan CE, Celenk FG, Ulker S: Apocynin restores endothelial dysfunction in streptozotocin diabetic rats through regulation of nitric oxide synthase and NADPH oxidase expressions. J Diabetes Complications 2010, 24:415-423.
  • [60]Schmid PM, Resch M, Schach C, Birner C, Riegger GA, Luchner A, Endemann DH: Antidiabetic treatment restores adiponectin serum levels and APPL1 expression, but does not improve adiponectin-induced vasodilation and endothelial dysfunction in Zucker diabetic fatty rats. Cardiovasc Diabetol 2013, 12:46. BioMed Central Full Text
  • [61]Salloum FN, Chau V, Varma A, Hoke NN, Toldo S, Biondi-Zoccai GG, Crea F, Vetrovec GW, Abbate A: Anakinra in experimental acute myocardial infarction–does dosage or duration of treatment matter? Cardiovasc Drugs Ther 2009, 23:129-135.
  • [62]Yazar M, Deger Y, Yur F: Serum cytokine and vitamie E levels in experimental diabetic rats. J An Vet Adv 2011, 10:622-626.
  • [63]Mahmoud AM, Ashour MB, Abdel-Moneim A, Ahmed OM: Hesperidin and naringin attenuate hyperglycemia-mediated oxidative stress and proinflammatory cytokine production in high fat fed/streptozotocin-induced type 2 diabetic rats. J Diabetes Complications 2012, 26:483-490.
  • [64]Mooradian AD, Reed RL, Meredith KE, Scuderi P: Serum levels of tumor necrosis factor and IL-1 alpha and IL-1 beta in diabetic patients. Diabetes Care 1991, 14:63-65.
  • [65]Du M, Basu A, Fu D, Wu M, Centola M, Jenkins AJ, Hanssen KF, Garg SK, Hammad SM, Scardo JA, Aston CE, Lyons TJ: Serum inflammatory markers and preeclampsia in type 1 diabetes: a prospective study. Diabetes Care 2013, 36:2054-2061.
  • [66]Pereira MM, Sant’Ana Santos TP, Aras R, Couto RD, Sousa Atta ML, Atta AM: Serum levels of cytokines and chemokines associated with cardiovascular disease in Brazilian patients treated with statins for dyslipidemia. Int Immunopharmacol 2014, 18:66-70.
  • [67]Patel JI, Saleh GM, Hykin PG, Gregor ZJ, Cree IA: Concentration of haemodynamic and inflammatory related cytokines in diabetic retinopathy. Eye (Lond) 2008, 22:223-228.
  • [68]Palsamy P, Sivakumar S, Subramanian S: Resveratrol attenuates hyperglycemia-mediated oxidative stress, proinflammatory cytokines and protects hepatocytes ultrastructure in streptozotocin-nicotinamide-induced experimental diabetic rats. Chem Biol Interact 2010, 186:200-210.
  • [69]Sivakumar S, Palsamy P, Subramanian SP: Impact of D-pinitol on the attenuation of proinflammatory cytokines, hyperglycemia-mediated oxidative stress and protection of kidney tissue ultrastructure in streptozotocin-induced diabetic rats. Chem Biol Interact 2010, 188:237-245.
  文献评价指标  
  下载次数:1次 浏览次数:6次