Journal of Biological Engineering | |
Patterned polymer matrix promotes stemness and cell-cell interaction of adult stem cells | |
William H. Hofmeister1  Hak-Joon Sung2  Alexander Terekhov1  Spencer W. Crowder2  Daniel A. Balikov2  Lino Costa1  Lucas H. Hofmeister2  | |
[1] Center for Laser Applications, University of Tennessee Space Institute, Tullahoma, TN, USA;Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA | |
关键词: Nanofiber; Nanopore; Polycaprolactone; Matrix; Stem cell; | |
Others : 1230534 DOI : 10.1186/s13036-015-0016-x |
|
received in 2015-07-07, accepted in 2015-09-21, 发布年份 2015 | |
【 摘 要 】
Background
The interaction of stem cells with their culture substrates is critical in controlling their fate and function. Declining stemness of adult-derived human mesenchymal stem cells (hMSCs) during in vitro expansion on tissue culture polystyrene (TCPS) severely limits their therapeutic efficacy prior to cell transplantation into damaged tissues. Thus, various formats of natural and synthetic materials have been manipulated in attempts to reproduce in vivo matrix environments in which hMSCs reside.
Results
We developed a series of patterned polymer matrices for cell culture by hot-pressing poly(ε-caprolactone) (PCL) films in femtosecond laser-ablated nanopore molds, forming nanofibers on flat PCL substrates. hMSCS cultured on these PCL fiber matrices significantly increased expression of critical self-renewal factors, Nanog and OCT4A, as well as markers of cell-cell interaction PECAM and ITGA2. The results suggest the patterned polymer fiber matrix is a promising model to maintain the stemness of adult hMSCs.
Conclusion
This approach meets the need for scalable, highly repeatable, and tuneable models that mimic extracellular matrix features that signal for maintenance of hMSC stemness.
【 授权许可】
2015 Hofmeister et al.
【 预 览 】
Files | Size | Format | View |
---|---|---|---|
20140709065413486.pdf | 797KB | download | |
Fig. 4. | 197KB | Image | download |
Fig. 3. | 92KB | Image | download |
Fig. 2. | 51KB | Image | download |
Fig. 1. | 43KB | Image | download |
【 图 表 】
Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
【 参考文献 】
- [1]Tibbitt MW, Anseth KS. Hydrogels as extracellular matrix mimics for 3D cell culture. Biotechnol Bioeng. 2009; 103(4):655-663.
- [2]Pathak A, Kumar S. Biophysical regulation of tumor cell invasion: moving beyond matrix stiffness. Integr Biol (Camb). 2011; 3(4):267-278.
- [3]Jahani H, Jalilian FA, Wu CY, Kaviani S, Soleimani M, Abassi N et al.. Controlled surface morphology and hydrophilicity of polycaprolactone toward selective differentiation of mesenchymal stem cells to neural like cells. J Biomed Mater Res A. 2015; 103(5):1875-1881.
- [4]Mohan N, Nair PD, Tabata Y. Growth factor-mediated effects on chondrogenic differentiation of mesenchymal stem cells in 3D semi-IPN poly(vinyl alcohol)-poly(caprolactone) scaffolds. J Biomed Mater Res A. 2010; 94(1):146-159.
- [5]Xue D, Zheng Q, Zong C, Li Q, Li H, Qian S et al.. Osteochondral repair using porous poly(lactide-co-glycolide)/nano-hydroxyapatite hybrid scaffolds with undifferentiated mesenchymal stem cells in a rat model. J Biomed Mater Res A. 2010; 94(1):259-270.
- [6]Lindstrom S, Iles A, Persson J, Hosseinkhani H, Hosseinkhani M, Khademhosseini A et al. Nanoporous Titania Coating of Microwell Chips for Stem Cell Culture and Analysis. J Biomech Sci Eng. 2010;5(3)272–79. doi:10.1299/jbse.5.272.
- [7]Hosseinkhani H, Hiraoka Y, Li CH, Chen YR, Yu DS, Hong PD et al.. Engineering three-dimensional collagen-IKVAV matrix to mimic neural microenvironment. ACS Chem Neurosci. 2013; 4(8):1229-1235.
- [8]Tanabe S. Origin of cells and network information. World J Stem Cells. 2015; 7(3):535-540.
- [9]Bartosh TJ, Ylostalo JH, Mohammadipoor A, Bazhanov N, Coble K, Claypool K et al.. Aggregation of human mesenchymal stromal cells (MSCs) into 3D spheroids enhances their antiinflammatory properties. Proc Natl Acad Sci U S A. 2010; 107(31):13724-13729.
- [10]Bara JJ, Richards RG, Alini M, Stoddart MJ. Concise review: Bone marrow-derived mesenchymal stem cells change phenotype following in vitro culture: implications for basic research and the clinic. Stem Cells. 2014; 32(7):1713-1723.
- [11]Sart S, Tsai AC, Li Y, Ma T. Three-Dimensional Aggregates of Mesenchymal Stem Cells: Cellular Mechanisms, Biological Properties, and Applications. Tissue engineering Part B, Reviews. 2013. doi:10.1089/ten.TEB.2013.0537.
- [12]Kinney MA, McDevitt TC. Emerging strategies for spatiotemporal control of stem cell fate and morphogenesis. Trends Biotechnol. 2013; 31(2):78-84.
- [13]Guvendiren M, Burdick JA. Engineering synthetic hydrogel microenvironments to instruct stem cells. Curr Opin Biotechnol. 2013; 24(5):841-846.
- [14]Nikkhah M, Edalat F, Manoucheri S, Khademhosseini A. Engineering microscale topographies to control the cell-substrate interface. Biomaterials. 2012; 33(21):5230-5246.
- [15]Engler AJ, Sen S, Sweeney HL, Discher DE. Matrix elasticity directs stem cell lineage specification. Cell. 2006; 126(4):677-689.
- [16]Heidemann SR, Wirtz D. Towards a regional approach to cell mechanics. Trends Cell Biol. 2004; 14(4):160-166.
- [17]Paszek MJ, Zahir N, Johnson KR, Lakins JN, Rozenberg GI, Gefen A et al.. Tensional homeostasis and the malignant phenotype. Cancer Cell. 2005; 8(3):241-254.
- [18]Pelham RJ, Wang Y. Cell locomotion and focal adhesions are regulated by substrate flexibility. Proc Natl Acad Sci U S A. 1997; 94(25):13661-13665.
- [19]Foster CS, Smith CA, Dinsdale EA, Monaghan P, Neville AM. Human mammary gland morphogenesis in vitro: the growth and differentiation of normal breast epithelium in collagen gel cultures defined by electron microscopy, monoclonal antibodies, and autoradiography. Dev Biol. 1983; 96(1):197-216.
- [20]Roeder BA, Kokini K, Sturgis JE, Robinson JP, Voytik-Harbin SL. Tensile mechanical properties of three-dimensional type I collagen extracellular matrices with varied microstructure. J Biomech Eng. 2002; 124(2):214-222.
- [21]Barcellos-Hoff MH, Aggeler J, Ram TG, Bissell MJ. Functional differentiation and alveolar morphogenesis of primary mammary cultures on reconstituted basement membrane. Development. 1989; 105(2):223-235.
- [22]Kumar S. Cellular mechanotransduction: stiffness does matter. Nat Mater. 2014; 13(10):918-920.
- [23]Hockemeyer K, Janetopoulos C, Terekhov A, Hofmeister W, Vilgelm A, Costa L et al.. Engineered three-dimensional microfluidic device for interrogating cell-cell interactions in the tumor microenvironment. Biomicrofluidics. 2014; 8(4):044105.
- [24]Miroshnikova YA, Jorgens DM, Spirio L, Auer M, Sarang-Sieminski AL, Weaver VM. Engineering strategies to recapitulate epithelial morphogenesis within synthetic three-dimensional extracellular matrix with tunable mechanical properties. Phys Biol. 2011; 8(2):026013.
- [25]Murphy WL, McDevitt TC, Engler AJ. Materials as stem cell regulators. Nat Mater. 2014; 13(6):547-557.
- [26]McMurray RJ, Gadegaard N, Tsimbouri PM, Burgess KV, McNamara LE, Tare R et al.. Nanoscale surfaces for the long-term maintenance of mesenchymal stem cell phenotype and multipotency. Nat Mater. 2011; 10(8):637-644.
- [27]Dubey N, Letourneau PC, Tranquillo RT. Neuronal contact guidance in magnetically aligned fibrin gels: effect of variation in gel mechano-structural properties. Biomaterials. 2001; 22(10):1065-1075.
- [28]McCall AS, Cummings CF, Bhave G, Vanacore R, Page-McCaw A, Hudson BG. Bromine Is an Essential Trace Element for Assembly of Collagen IV Scaffolds in Tissue Development and Architecture. Cell. 2014; 157(6):1380-1392.
- [29]Rajput D, Costa L, Lansford K, Terekhov A, Hofmeister W. Solution-Cast High-Aspect-Ratio Polymer Structures from Direct-Write Templates. Acs Appl Mater Inter. 2013; 5(1):1-5.
- [30]White YV, Li XX, Sikorski Z, Davis LM, Hofmeister W. Single-pulse ultrafast-laser machining of high aspect nano-holes at the surface of SiO2. Opt Express. 2008; 16(19):14411-14420.
- [31]Bhuyan MK, Courvoisier F, Lacourt PA, Jacquot M, Salut R, Furfaro L et al.. High aspect ratio nanochannel machining using single shot femtosecond Bessel beams. Appl Phys Lett. 2010; 97(8):081102.
- [32]Courvoisier F, Lacourt PA, Jacquot M, Bhuyan MK, Furfaro L, Dudley JM. Surface nanoprocessing with nondiffracting femtosecond Bessel beams. Opt Lett. 2009; 34(20):3163-3165.
- [33]Delobelle B, Salut R, Courvoisier F, Delobelle P. A detailed study through the focal region of near-threshold single-shot femtosecond laser ablation nano-holes in borosilicate glass. Opt Commun. 2011; 284:5746-5757.
- [34]Herbstman JF, Hunt AJ. High-aspect ratio nanochannel formation by single femtosecond laser pulses. Opt Express. 2010; 18(16):16840-16848.
- [35]Chou CL, Rivera AL, Sakai T, Caplan AI, Goldberg VM, Welter JF et al.. Micrometer Scale Guidance of Mesenchymal Stem Cells to Form Structurally Oriented Cartilage Extracellular Matrix. Tissue Eng Pt A. 2013; 19(9–10):1081-1090.
- [36]Mitsui K, Tokuzawa Y, Itoh H, Segawa K, Murakami M, Takahashi K et al.. The homeoprotein Nanog is required for maintenance of pluripotency in mouse epiblast and ES cells. Cell. 2003; 113(5):631-642.
- [37]Albelda SM, Muller WA, Buck CA, Newman PJ. Molecular and Cellular Properties of Pecam-1 (Endocam/Cd31) - a Novel Vascular Cell Cell-Adhesion Molecule. J Cell Biol. 1991; 114(5):1059-1068.
- [38]Deans RJ, Moseley AB. Mesenchymal stem cells: Biology and potential clinical uses. Exp Hematol. 2000; 28(8):875-884.
- [39]Yu X, Miyamoto S, Mekada E. Integrin alpha 2 beta 1-dependent EGF receptor activation at cell-cell contact sites. J Cell Sci. 2000; 113(Pt 12):2139-2147.
- [40]Sart S, Tsai AC, Li Y, Ma T. Three-dimensional aggregates of mesenchymal stem cells: cellular mechanisms, biological properties, and applications. Tissue Eng B Rev. 2014; 20(5):365-380.
- [41]Londono C, Loureiro MJ, Slater B, Lucker PB, Soleas J, Sathananthan S et al.. Nonautonomous contact guidance signaling during collective cell migration. Proc Natl Acad Sci U S A. 2014; 111(5):1807-1812.